The spacecraft for deep space exploration missions will face extreme environments, including cryogenic temperature, intense radiation, wide-range temperature variations and even the combination of conditions mentioned above. Harsh environments will lead to solder joints degradation or even failure, resulting in damage to onboard electronics. The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices, but effectively improve the overall reliability of spacecraft, which is of great significance to the aviation industry. In this paper, we review the reliability research on SnPb solder alloys, Sn-based lead-free solder alloys and In-based solder alloys in extreme environments, and try to provide some suggestions for the follow-up studies, which focus on solder joint reliability under extreme environments.
Lubricating greases are widely used in e.g. open gear drives and gearboxes with difficult sealing conditions. The efficiency and heat balance of grease-lubricated gearboxes depend strongly on the lubrication mechanisms channeling and circulating, for which the grease flow is causal. The computational fluid dynamics opens up the possibility to visualize and understand the grease flow in gearboxes in more detail. In this study, a single-stage gearbox lubricated with an NLGI 1-2 grease was modeled by the finite-volume method to numerically investigate the fluid flow. Results show that the rotating gears influence the grease sump only locally around the gears. For a low grease fill volume, the rotation of the gears is widely separated from the grease sump. For a high grease fill volume, a pronounced gear-grease interaction results in a circulating grease flow around the gears. The simulated grease distributions show good accordance with high-speed camera recordings.
The stress state is critical to the reliability of structures, but existing ultrasonic methods are challenging to measure local stress. In this paper, zero-group-velocity (ZGV) Lamb mode was proposed to measure the local stress field in thin aluminum plates. The Lamb wave's dispersive characteristics under initial stress were analyzed based on the Floquet-Bloch theory with Murnaghan hyperelastic material model. The obtained dispersion curves show that higher-order Lamb wave modes near the cut-off frequencies are sensitive to applied stress across the plate, indicating that the S1-ZGV mode has a rather high sensitivity to stress. Similar to conventional ultrasonic stress measurement, it is found that the frequency of the S1-ZGV mode changes near-linearly with the amplitude of applied stress. Numerical experiments were conducted to illustrate the feasibility of local stress measurement in a thin aluminum plate based on the S1-ZGV mode. Single and multiple localized stress fields were evaluated with the S1-ZGV method, and reconstructed results matched well with actual stress fields, proving that the ZGV Lamb wave method is a sensitive stress measurement technique in thin plates.
Laser powder bed fusion (LPBF) is an advanced manufacturing technology; however, inappropriate LPBF process parameters may cause printing defects in materials. In the present work, the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated by a two-step optimization approach. Subsequently, heat transfer and liquid flow behaviors during LPBF were simulated by a well-tested phenomenological model, and the defect formation mechanisms in the as-fabricated alloy were discussed. The optimized process parameters for LPBF were detected as laser power changed from 195 W to 210 W, with scanning speed of 1250 mm/s. The LPBF process was divided into a laser irradiation stage, a spreading flow stage, and a solidification stage. The morphologies and defects of deposited tracks were affected by liquid flow behavior caused by rapid cooling rates. The findings of this research can provide valuable support for printing defect-free metal components.
The world is currently undergoing profound changes which have never happened within the past century. Global competition in the technology and industry fields is becoming increasingly fierce. The strategic competition of the major powers further focuses on the manufacturing industry. Developed countries such as the United States, Germany, and Japan have successively put forward strategic plans such as “re-industrialization” and “return of manufacturing industry”, aiming to seize the commanding heights of a new round of global high-end technology competition and expand international market share. Standing at the historic intersection of a new round of scientific and technological revolution and China’s accelerated high-quality development, the “14th Five-Year Plan” clearly pointed out that intelligent manufacturing is the main development trend to promote China’s manufacturing to the medium-high end of the global value chain. This reflects the importance of advanced manufacturing for national strategic layout. To better grasp the development direction of advanced manufacturing equipment, the development process and current application status of manufacturing equipment are summarized, and thereafter the characteristics of manufacturing equipment in different development stages of the manufacturing industry are analyzed. Finally, the development trend of advanced milling equipment is prospected.
This paper presents a cloud-based data-driven design optimization system, named DADOS, to help engineers and researchers improve a design or product easily and efficiently. DADOS has nearly 30 key algorithms, including the design of experiments, surrogate models, model validation and selection, prediction, optimization, and sensitivity analysis. Moreover, it also includes an exclusive ensemble surrogate modeling technique, the extended hybrid adaptive function, which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate. To improve ease of use, DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging, dropping, and connecting algorithm blocks into a workflow instead of writing massive code. In addition, DADOS allows users to visualize the results to gain more insights into the design problems, allows multi-person collaborating on a project at the same time, and supports multi-disciplinary optimization. This paper also details the architecture and the user interface of DADOS. Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization. Since DADOS is a cloud-based system, anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware.
The crack fault is one of the most common faults in the rotor system, and researchers have paid close attention to its fault diagnosis. However, most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals. In this paper, a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function (RBF) network and Pattern recognition neural network (PRNN) is presented. Firstly, a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method, where the crack's periodic opening and closing pattern and different degrees of crack depth are considered. Then, the dynamic response is obtained by the harmonic balance method. By adjusting the crack parameters, the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots. The analysis results show that the first critical speed, first subcritical speed, first critical speed amplitude, and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis. Based on this, the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input. Test results show that the proposed method has high fault diagnosis accuracy. This research proposes a crack detection method adequate for the hollow shaft rotor system, where the crack depth and position are both unknown.
Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery. Therefore, it is difficult to extract, analyze, and diagnose mechanical fault features. To accurately extract sensitive features from the strong noise interference and unsteady monitoring signals of reciprocating machinery, a study on the time-frequency feature extraction method of multi-source shock signals is conducted. Combining the characteristics of reciprocating mechanical vibration signals, a targeted optimization method considering the variational modal decomposition (VMD) mode number and second penalty factor is proposed, which completed the adaptive decomposition of coupled signals. Aiming at the bilateral asymmetric attenuation characteristics of reciprocating mechanical shock signals, a new bilateral adaptive Laplace wavelet (BALW) is established. A search strategy for wavelet local parameters of multi-shock signals is proposed using the harmony search (HS) method. A multi-source shock simulation signal is established, and actual data on the valve fault are obtained through diesel engine fault experiments. The fault recognition rate of the intake and exhaust valve clearance is above 90% and the extraction accuracy of the shock start position is improved by 10°.
In recent years, the number of patients with orthopedic diseases such as cervical spondylosis has increased, resulting in an increase in the demand for orthopedic surgery. However, thermal necrosis and bone cracks caused by surgery severely restrict the development and progression of orthopedic surgery. For the material of cutting tool processing bone in bone surgery of drilling high temperature lead to cell death, easy to produce the problem such as crack cause secondary damage effects to restore, in this paper, a bionic drill was designed based on the micro-structure of the dung beetle's head and back. The microstructure configuration parameters were optimized by numerical analysis, and making use of the optical fiber laser marking machine preparation of bionic bit; through drilling test, the mathematical model of drilling temperature and crack generation based on micro-structure characteristic parameters was established by infrared thermal imaging technology and acoustic emission signal technology, and the cooling mechanism and crack suppression strategy were studied. The experimental results show that when the speed is 60 m/min, the cooling effects of the bionic bit T1 and T2 are 15.31% and 19.78%, respectively, and both kinds of bits show obvious crack suppression effect. The research in this paper provides a new idea for precision and efficient machining of bone materials, and the research results will help to improve the design and manufacturing technology and theoretical research level in the field of bone drilling tools.
Complicated tribological behavior occurs when human fingers touch and perceive the surfaces of objects. In this process, people use their exploration style with different conditions, such as contact load, sliding speed, sliding direction, and angle of orientation between fingers and object surface consciously or unconsciously. This work addressed interlaboratory experimental devices for finger active and passive tactile friction analysis, showing two types of finger movement. In active sliding experiment, the participant slid their finger freely against the object surface, requiring the subject to control the motion conditions themselves. For passive sliding experiments, these motion conditions were adjusted by the device. Several analysis parameters, such as contact force, vibration acceleration signals, vibration magnitude, and fingerprint deformation were recorded simultaneously. Noticeable friction differences were observed when comparing active sliding and passive sliding. For passive sliding, stick-slip behavior occurred when sliding in the distal direction, evidenced by observing the friction force and the related deformation of the fingerprint ridges. The employed devices showed good repeatability and high reliability, which enriched the design of the experimental platform and provided guidance to the standardization research in the field of tactile friction.
In current research, many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model, Compact Model and NLS criterion et al. However, there is still a question that has not been well explained yet. That is: What is the core factors affecting the thermal conductivity of particles? In this paper, based on the coupled discrete element-finite difference (DE-FD) method and spherical aluminum powder, the relationship between the parameters and the thermal conductivity of the powder (ETCp) is studied. It is found that the key factor that can described the change trend of ETCp more accurately is not the materials of the powder but the average contact area between particles (aave) which also have a close nonlinear relationship with the average particle size d50. Based on this results, the expression for calculating the ETCp of the sphere metal powder is successfully reduced to only one main parameter d50 and an efficient calculation model is proposed which can applicate both in room and high temperature and the corresponding error is less than 20.9% in room temperature. Therefore, in this study, based on the core factors analyzation, a fast calculation model of ETCp is proposed, which has a certain guiding significance in the field of thermal field simulation.
The current research of abrasive belt grinding rail mainly focuses on the contact mechanism and structural design. Compared with the closed structure abrasive belt grinding, open-structured abrasive belt grinding has excellent performance in dynamic stability, consistency of grinding quality, extension of grinding mileage and improvement of working efficiency. However, in the contact structure design, the open-structured abrasive belt grinding rail using a profiling pressure grinding plate and the closed structure abrasive belt using the contact wheel are different, and the contact mechanisms of the two are different. In this paper, based on the conformal contact and Hertz theory, the contact mechanism of the pressure grinding plate, abrasive belt and rail is analyzed. Through finite element simulation and static pressure experiment, the contact behavior of pressure grinding plate, abrasive belt and rail under single concentrated force, uniform force and multiple concentrated force was studied, and the distribution characteristics of contact stress on rail surface were observed. The results show that under the same external load, there are three contact areas under the three loading modes. The outer contour of the middle contact area is rectangular, and the inner contour is elliptical. In the contact area at both ends, the stress is extremely small under a single concentrated force, the internal stress is drop-shaped under a uniform force, and the internal stress under multiple concentration forces is elliptical. Compared with the three, the maximum stress is the smallest and the stress distribution is more uniform under multiple concentrated forces. Therefore, the multiple concentrated forces is the best grinding pressure loading mode. The research provides support for the application of rail grinding with open-structured abrasive belt based on pressure grinding plate, such as contact mechanism and grinding pressure mode selection.
Large-scale solar sails can provide power to spacecraft for deep space exploration. A new type of telescopic tubular mast (TTM) driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solve the problem of contact between the sail membrane and the spacecraft under light pressure. Compared with the traditional TTM, it has a small size, light weight, high extension ratio, and simple structure. The anti-blossoming and self-unlocking structure of the proposed TTM was described. We aimed to simplify the TTM with a complex structure into a beam model with equal linear mass density, and the simulation results showed good consistency. The dynamic equation was derived based on the equivalent model, and the effects of different factors on the vibration characteristics of the TTM were analyzed. The performance parameters were optimized based on a multiobjective genetic algorithm, and prototype production and load experiments were conducted. The results show that the advantages of the new TTM can complete the deployment of large-scale solar sails, which is valuable for future deep space exploration.
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool. And it cannot be eliminated due to the error propagation of components in the assembly process, which is generally non-uniformly distributed in the whole working space. A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice. However, the expression ranges based on the standard quasi-static expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool. To address this issue, a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors. Firstly, an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies, respectively. Furthermore, based on the proposed kinematic Jacobian-Torsor model, a spatial expression of geometric errors for the multi-axis machine tool is given. And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools. The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.
Axial flux permanent magnet synchronous motors (AFPMSMs) have been widely used in wind-power generation, electric vehicles, aircraft, and other renewable-energy applications owing to their high power density, operating efficiency, and integrability. To facilitate comprehensive research on AFPMSM, this article reviews the developments in the research on the design and control optimization of AFPMSMs. First, the basic topologies of AFPMSMs are introduced and classified. Second, the key points of the design optimization of core and coreless AFPMSMs are summarized from the aspects of parameter design, structure design, and material optimization. Third, because efficiency improvement is an issue that needs to be addressed when AFPMSMs are applied to electric or other vehicles, the development status of efficiency-optimization control strategies is reviewed. Moreover, control strategies proposed to suppress torque ripple caused by the small inductance of disc coreless permanent magnet synchronous motors (DCPMSMs) are summarized. An overview of the rotor-synchronization control strategies for disc contra-rotating permanent magnet synchronous motors (CRPMSMs) is presented. Finally, the current difficulties and development trends revealed in this review are discussed.
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools, M2 high-speed steel specimens were fabricated by selective laser melting (SLM). Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated. The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control. Models to evaluate the effect of substrate temperature and energy density on hardness were studied. The optimized process parameters, laser power, scan speed, scan distance, and substrate temperature, for fabricated M2 are 220 W, 960 mm/s, 0.06 mm, and 200 ℃, respectively. Based on this, the hardness and tensile strength reached 60 HRC and 1000 MPa, respectively. Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated. The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained. AM showed great application potential in the field of special conformal cooling cutting tool preparation.
This study uses the digital image correlation technique to measure the crack tip displacement field at various crack lengths in U71MnG rail steel, and the interpolated continuous displacement field was obtained by fitting with a back propagation (BP) neural network. The slip and stacking of dislocations affect crack initiation and growth, leading to changes in the crack tip field and the fatigue characteristics of crack growth. The Christopher-James-Patterson (CJP) model describes the elastic stress field around a growing fatigue crack that experiences plasticity-induced shielding. In the present work, this model is modified by including the effect of the dislocation field on the plastic zone of the crack tip and hence on the elastic field by introducing a plastic flow factor ρ, which represents the amount of blunting of the crack tip. The Levenberg-Marquardt (L-M) nonlinear least squares method was used to solve for the stress intensity factors. To verify the accuracy of this modified CJP model, the theoretical and experimental plastic zone errors before and after modification were compared, and the variation trends of the stress intensity factors and the plastic flow factor ρ were analysed. The results show that the CJP model, with the introduction of ρ, exhibits a good blunting trend. In the low plasticity state, the modified model can accurately describe the experimental plastic zone, and the modified stress intensity factors are more accurate, which proves the effectiveness of dislocation correction. This plastic flow correction provides a more accurate crack tip field model and improves the CJP crack growth relationship.
The performance of an integrated thermal management system significantly influences the stability of special-purpose vehicles; thus, enhancing the heat transfer of the radiator is of great significance. Common research methods for radiators include fluid mechanics numerical simulations and experimental measurements, both of which are time-consuming and expensive. Applying the surrogate model to the analysis of the flow and heat transfer in louvered fins can effectively reduce the computational cost and obtain more data. A simplified louvered-fin heat transfer unit was established, and computational fluid dynamics (CFD) simulations were conducted to obtain the flow and heat transfer characteristics of the geometric structure. A three-factor and six-level orthogonal design was established with three structural parameters: angle θ, length a, and pitch Lp of the louvered fins. The results of the orthogonal design were subjected to a range analysis, and the effects of the three parameters θ, a, and Lp on the j, f, and JF factors were obtained. Accordingly, a proxy model of the heat transfer performance for louvered fins was established based on the artificial neural network algorithm, and the model was trained with the data obtained by the orthogonal design. Finally, the fin structure with the largest JF factor was realized. Compared with the original model, the optimized model improved the heat transfer factor j by 2.87%, decreased the friction factor f by 30.4%, and increased the comprehensive factor JF by 15.7%.
Bolt connection is one of the main fixing methods of cylindrical shell structures. A typical bolted connection model is considered as a tuned system. However, in the actual working conditions, due to the manufacturing error, installation error and uneven materials of bolts, there are always random errors between different bolts. To investigate the influence of non-uniform parameters of bolt joint, including the stiffness and the distribution position, on frequency complexity characteristics of cylindrical shell through a statistical method is the main aim of this paper. The bolted joints considered here were simplified as a series of springs with random features. The vibration equation of the bolted joined cylindrical shell was derived based on Sanders' thin shell theory. The Monte Carlo simulation and statistical theory were applied to the statistical analysis of mode characteristics of the system. First, the frequency and mode shape of the tuned system were investigated and compared with FEM. Then, the effect of the random distribution and the random constraint stiffness of the bolts on the frequency and mode shape were studied. And the statistical analysis on the natural frequencies was evaluated for different mistuned levels. And some special cases were presented to help understand the effect of random mistuning. This research introduces random theory into the modeling of bolted joints and proposes a reference result to interpret the complexity of the modal characteristics of cylindrical shells with non-uniform parameters of bolt joints.
The judgment of gear failure is based on the pitting area ratio of gear. Traditional gear pitting calculation method mainly rely on manual visual inspection. This method is greatly affected by human factors, and is greatly affected by the working experience, training degree and fatigue degree of the detection personnel, so the detection results may be biased. The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine, and has high detection accuracy. To improve the measurement accuracy of gear pitting, a novel multi-scale splicing attention U-Net (MSSA U-Net) is explored in this study. An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information. Then, an attention module is applied to select the key features of the splicing feature map. Given that MSSA U-Net adequately uses multi-scale semantic features, it has better segmentation performance on irregular small objects than U-Net and attention U-Net. On the basis of the designed visual detection platform and MSSA U-Net, a methodology for measuring the area ratio of gear pitting is proposed. With three datasets, experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability. Therefore, the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting.
Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery. Time synchronous averaging is an effective and convenient technique for extracting those components. However, the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized. This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem. With this approach, phase detection and compensation eliminate all segments' phase differences, which enables the segments to be well synchronized. The effectiveness of the proposed method is validated by numerical and experimental signals.
To benefit tissue removal and postoperative rehabilitation, increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy. A novel elliptical vibration cutting (EVC) has been introduced for bone cutting compared with conventional cutting (CC) in this paper. With the assistance of high-speed microscope imaging and the dynamometer, the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively, which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process. It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction. These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.
The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline. In this research, the judder characteristics of automobile clutch friction materials and experimental verification are studied. First, considering the stick-slip phenomenon in the clutch engagement process, a detailed 9-degrees-of-freedom (DOF) model including the body, each cylinder of the engine, clutch and friction lining, torsional damper, transmission and other driveline parts is established, and the calculation formula of friction torque in the clutch engagement process is determined. Second, the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed, and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software. Finally, judder bench test equipment and a corresponding damping test program are developed, and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed. After a large number of tests, the evaluation basis of the test is determined. The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal. When the friction gradient value is less than -0.005 s/m, the judder signal of the measured clutch cannot be completely attenuated, and the judder phenomenon occurs. When the friction gradient is greater than - 0.005 s/m, the judder signal can be significantly suppressed and the system connection tends to be stable.
The four-track walking mining vehicle can better cope with the complex terrain of cobalt-rich crusts on the seabed. To explore the influence of different parameters on the obstacle-crossing ability of mining vehicles, this paper took a certain type of mine vehicle as an example and establish a mechanical model of the mine vehicle. Through this model, the vehicle’s traction coefficient variation could be analyzed during the obstacle-crossing process. It also reflected the relationship between the obstacle-crossing ability and the required traction coefficient. Many parameters were used for this analysis including the radius of the guide wheel radius, ground clearance of the driving wheel, the dip angle of the approaching angular and the position of centroid. The result showed that the ability to cross the obstacles requires adhesion coefficient as support. When the ratio between obstacle height and ground clearance of the guide wheel was greater than 0.7, the required adhesion coefficient increased sharply. The ability to cross obstacles will decrease, if the radius of the guide wheel increases, the height of the driving wheel increases or the dip angle of the approaching angular increases. It was most beneficial to cross the obstacle when the ratio of the distance between the center of mass and the front driving wheel to the wheelbase is between 0.45-0.48. The results of this paper could provide reference for structural parameter design and performance research for mining vehicles.
After remanufacturing disassembly, several kinds of friction damages can be found on the mating surface of interference fit. These damages should be repaired and the cost is closely related to the severity of damages. Inspired by the excellent performance of surface texture in wear reduction, 5 shapes of pit array textures are added to the specimens' surface to study their reduction effect of disassembly damage for interference fit. The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows: equivalent circle diameter of single texture, texture shape and texture surface density. The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density. The circular texture with a surface density of 30% and a diameter of 100 μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection. And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface. Besides, the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments. The results show that the load-carrying capacity of the excellent texture surface is increased about 40% compared with that of without texture. This research provides a potential approach to reduce disassembly damage for interference fit.
The development of a battery management algorithm is highly dependent on high-quality battery operation data, especially the data in extreme conditions such as low temperatures. The data in faults are also essential for failure and safety management research. This study developed a battery big data platform to realize vehicle operation, energy interaction and data management. First, we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously. Second, charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle. Third, the data transmission network was designed, a real-time monitoring interface was developed, and the self-developed battery management system was used to measure, collect, upload, and store battery operation data in real time. Finally, experimental validation was performed on the platform. Results demonstrate the efficiency and reliability of the platform. Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
This paper presents an energy-efficient control strategy for electric vehicles (EVs) driven by in-wheel-motors (IWMs) based on discrete adaptive sliding mode control (DASMC). The nonlinear vehicle model, tire model and IWM model are established at first to represent the operation mechanism of the whole system. Based on the modeling, two virtual control variables are used to represent the longitudinal and yaw control efforts to coordinate the vehicle motion control. Then DASMC method is applied to calculate the required total driving torque and yaw moment, which can improve the tracking performance as well as the system robustness. According to the vehicle nonlinear model, the additional yaw moment can be expressed as a function of longitudinal and lateral tire forces. For further control scheme development, a tire force estimator using an unscented Kalman filter is designed to estimate real-time tire forces. On these bases, energy efficient torque allocation method is developed to distribute the total driving torque and differential torque to each IWM, considering the motor energy consumption, the tire slip energy consumption, and the brake energy recovery. Simulation results of the proposed control strategy using the co-platform of Matlab/Simulink and CarSim® demonstrate that it can accomplish vehicle motion control in a coordinated and economic way.
Power-assisted upper-limb exoskeletons are primarily used to improve the handling efficiency and load capacity. However, kinematic mismatch between the kinematics and biological joints is a major problem in most existing exoskeletons, because it reduces the boosting effect and causes pain and long-term joint damage in humans. In this study, a shoulder augmentation exoskeleton was designed based on a parallel mechanism that solves the shoulder dislocation problem using the upper arm as a passive limb. Consequently, the human–machine synergy and wearability of the exoskeleton system were improved without increasing the volume and weight of the system. A parallel mechanism was used as the structural body of the shoulder joint exoskeleton, and its workspace, dexterity, and stiffness were analyzed. Additionally, an ergonomic model was developed using the principle of virtual work, and a case analysis was performed considering the lifting of heavy objects. The results show that the upper arm reduces the driving force requirement in coordinated motion, enhances the load capacity of the system, and achieves excellent assistance.
Chinese Journal of Mechanical Engineering Chinese Journal of Mechanical Engineering
ISSN 1000-9345
CN 11-2737/TH