为验证新型镍铝青铜合金应用于阀体生产的可行性, 采用熔模铸造工艺, 模拟分析了阀体铸件的凝固过程, 针对原始模拟方案产生的缩孔、缩松及冷隔等缺陷, 进行了铸造工艺方案优化。结果表明, 采用立式放置、阶梯式浇注方式, 并在最厚位置处增加补缩通道, 可消除阀体铸件的缩孔、缩松及冷隔等缺陷。经试制生产验证, 浇注后的铸件表面品质良好。X射线探伤结果表明铸件内部无缩孔、缩松及冷隔等缺陷, 获得了优质阀体铸件。
Abstract
In order to verify the application feasibility of novel nickel-aluminum bronze alloy to the valve body production, solidification process of investment casting valve body casting was simulated and analyzed by numerical software, and the initial casting process scheme was optimized according to the analysis of shrinkage porosity and cold shut.The results indicate that the shrinkage porosity and cold shut defects can be eliminated thoroughly when vertical placement and step gating system are adopted, and feeding channels are added in the thickest location.The simulation results were verified by trial production, and results reveal that the surface quality of valve body casting is satisfied.X-ray detection results demonstrate that absence of casting defects such as shrinkage porosity and cold shut is found in the valve body, and valve body casting with high quality can be produced.
关键词
阀体 /
熔模铸造 /
模拟分析 /
工艺优化 /
缩孔缩松
{{custom_keyword}} /
Key words
Valve Body /
Investment Casting /
Simulation Analysis /
Process Optimization /
Shrinkage Porosity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵鹏雄, 武玮, 淡勇.空间分辨技术在金属腐蚀原位监测中的应用[J].中国腐蚀与防护学报, 2020, 40(6):495-507.
[2] 胡桦倩.海洋环境中金属的腐蚀及防护研究[J].内蒙古煤炭经济, 2021(3):166-167.
[3] 金永明.新时代中国海洋强国战略治理体系论纲[J].中国海洋大学学报(社会科学版), 2019(5):22-30.
[4] 陈闽东, 张帆, 刘智勇, 等.金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J].金属学报, 2018, 54(9):99-109.
[5] YANG F F, KANG H J, GUO E Y, et al.The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5% NaCl solution[J].Corrosion Science, 2018, 139:333-345.
[6] YANG F F, KANG H J, CHEN Z N, et al.Electrochemical corrosion mechanisms of nickel-aluminium bronze with different nickel contents using the rotating disc electrode[J].Corrosion Science, 2019, 157:438-449.
[7] 路俊攀, 李湘海.加工铜及铜合金金相图谱[M].长沙:中南大学出版社, 2010.
[8] ZHANG B B, WANG J Z, YAN F Y.Load-dependent tribocorrosion behaviour of nickel-aluminium bronze in artificial seawater[J].Corrosion Science, 2018, 131:252-263.
[9] QIN Z B, XIA D H, ZHANG Y W, et al.Microstructure modification and improving corrosion resistance of laser surface quenched nickel-aluminum bronze alloy[J].Corrosion Science, 2020, 174:108 744.
[10] RIVERO P J, BERLANGA C, PALACIO J F, et al.Effect of Ti on microstructure, mechanical properties and corrosion behavior of a nickel-aluminum bronze alloy[J].Materials Research, 2021, 24(2):1-9.
[11] 徐健, 邢建东, 李镜银.镍铝青铜的熔铸工艺特点[J].材料开发与应用, 2004(2):36-39.
[12] 高浩斐, 屈银虎, 钟涛, 等.基于ProCAST的阀体零件熔模铸造艺优化[J].特种铸造及有色金, 2021, 41(5):657-660.
[13] 杨小建, 张怀章, 杨国超, 等.喷嘴本体的熔模铸造工艺及模拟计算[J].热加工工艺, 2021, 50(7):66-68.
[14] 谭培松.熔模铸造中缩孔、缩松的几种解决方法[J].特种铸造及有色合金, 2018, 38(7):744-747.
[15] 张国强, 赵占西, 顾君捷, 等.缸体消失模铸造数值模拟与工艺优化[J].特种铸造及有色合金, 2019, 39(1):63-66.
[16] 黄天佑.材料加工工艺[M].北京:清华大学出版社, 2010.
[17] 夏琨, 徐向阳, 段士伟.基于ProCAST的转子盘熔模铸造数值模拟研究[J].铸造技术, 2022, 43(5):7-10.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助(52101062); 贵州省省级科技计划资助项目(黔科合基础-ZK[2021]一般239); 遵义市科技计划资助项目(遵市科合HZ字(2021)203号); 遵义师范学院博士基金资助项目(遵师BS[2020]6号)
{{custom_fund}}