铜合金电化学腐蚀的研究进展

吴鑫林, 胡强, 曾良才, 刘鑫旺, 王强

特种铸造及有色合金 ›› 2023, Vol. 43 ›› Issue (5) : 607-613.

PDF(971 KB)
PDF(971 KB)
特种铸造及有色合金 ›› 2023, Vol. 43 ›› Issue (5) : 607-613. DOI: 10.15980/j.tzzz.2023.05.006
研究·论述

铜合金电化学腐蚀的研究进展

  • 吴鑫林1, 胡强2, 曾良才1, 刘鑫旺3, 王强1
作者信息 +

Research Progress in Electrochemical Corrosion of Copper Alloys

  • Wu Xinlin1, Hu Qiang2, Zeng Liangcai1, Liu xinwang3, Wang Qiang1
Author information +
文章历史 +

摘要

铜合金在海洋工程、交通运输和航空航天等领域具有广阔的应用前景。由于服役环境复杂, 除了要求优异的力学性能外, 对铜合金的耐腐蚀性也提出了很高的要求。综述了铜合金电化学腐蚀的研究现状, 重点分析了外界环境因素(温度、pH值等)和合金元素(Fe、Mn等)对铜合金腐蚀电位、腐蚀电流、腐蚀类型以及腐蚀产物等的影响规律和机制, 以期为后续铜合金耐蚀性能的优化提供参考。

Abstract

Copper alloys have broad application prospects in the fields of marine engineering, transportation and aerospace.Due to the complex service environment, in addition to excellent mechanical properties, the corrosion resistance of copper alloys is also highly required.Therefore, the research status on electrochemical corrosion of copper alloys were reviewed, and influence law as well as mechanism of external environmental factors (temperature, pH value, etc.) and alloying elements (Fe, Mn, etc.) on the corrosion potential, corrosion current, corrosion types and corrosion products of copper alloys were emphasized in order to provide reference for the subsequent optimization of the corrosion resistance of copper alloys.

关键词

铜合金 / 电化学腐蚀 / 环境因素 / 合金化

Key words

Copper Alloy / Electrochemical Corrosion / Environmental Factors / Alloying

引用本文

导出引用
吴鑫林, 胡强, 曾良才, 刘鑫旺, 王强. 铜合金电化学腐蚀的研究进展[J]. 特种铸造及有色合金, 2023, 43(5): 607-613 https://doi.org/10.15980/j.tzzz.2023.05.006
Wu Xinlin, Hu Qiang, Zeng Liangcai, Liu xinwang, Wang Qiang. Research Progress in Electrochemical Corrosion of Copper Alloys[J]. Special Casting & Nonferrous Alloys, 2023, 43(5): 607-613 https://doi.org/10.15980/j.tzzz.2023.05.006

参考文献

[1] TONG Y, SONG Q N, LI H L, et al.A comparative assessment on cavitation erosion behavior of typical copper alloys used for ship propeller[J].Journal of Chinese Society for Corrosion and Protection, 2021, 41(5):639-645.
[2] TEJA K, RAHUL K.Fabrication of Cu-Sn-Ni/SiC FGM for automotive applications:Investigation of its mechanical and tribological properties[J].Silicon, 2018, 10(4):1 705-1 716.
[3] HELM J, SCHULZ A, OLOWINSKY A, et al.Laser welding of laser-structured copper connectors for battery applications and power electronics[J].Welding in the World, 2020, 64(4):611-622.
[4] CHANG T, HERTING G, GOIDANICH S, et al.The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture[J].Corrosion Science, 2019, 149:54-67.
[5] SUSILOWATI S E, FUDHOLI A, SUMARDIYANTO D.Mechanical and microstructural characteristics of Cu-Sn-Zn/Gr metal matrix composites processed by powder metallurgy for bearing materials[J].Results in Engineering, 2022, 14:100 377.
[6] GAN C L, ZHOU N, KANG Y H, et al.Failure analysis of lead-free brass valve bodies[J].Engineering Failure Analysis, 2019, 100:536-543.
[7] ABEDINI M, GHASEMI H M.Electrochemical noise and polarization analyses on corrosion of Al-Brass alloy during erosion-corrosion[J].Journal of Bio-and Tribo-Corrosion, 2021, 7(2):1-13.
[8] YANG F F, KANG H J, GUO E Y, et al.The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5% NaCl solution[J].Corrosion Science, 2018, 139:333-345.
[9] JIN T Z, ZHANG W F, LI N, et al.Surface characterization and corrosion behavior of 90/10 copper-nickel alloy in marine environment[J].Materials, 2019, 12(11):1 869-1 875.
[10] WU T Q, ZHOU Z F, XU S, et al.A corrosion failure analysis of copper wires used in outdoor terminal boxes in substation[J].Engineering Failure Analysis, 2019, 98:83-94.
[11] FAES W, LECOMPTE S, AHMED Z Y, et al.Corrosion and corrosion prevention in heat exchangers[J].Corrosion Reviews, 2019, 37(2):131-155.
[12] LI K, ZHAI X F, GUAN F, et al.Progress on materials and protection technologies for marine propeller[J].Journal of Chinese Society for Corrosion and protection, 2018, 37(6):495-503.
[13] YANG R R, WANG Z R, JIANG J C, et al.Cause analysis and prevention measures of fire and explosion caused by sulfur corrosion[J].Engineering Failure Analysis, 2020, 108:104 342.
[14] AL-MAZEEDI H A, AL-WAKAA B, RAVINDRANATH K.Window-type rupture of carbon steel pipe in a hydroprocessing plant of a petroleum refinery due to ammonium bisulfide corrosion[J].Engineering Failure Analysis, 2021, 120:105 089.
[15] 王凯.Al0.1CoCrFeNi高熵合金的电化学腐蚀行为[D].太原:太原理工大学, 2020.
[16] 迟长云, 李宁, 薛建军, 等.温度对B30铜镍合金在海水中电化学行为的影响[J].腐蚀与防护, 2009, 30(11):772-774, 777.
[17] HUANG R J, ZHU D C.Effect of pH on corrosion performance of Cu-Se and Cu-Se-Te Alloys in 3.5% sodium chloride solution[J].Journal of Materials Engineering and Performance, 2019, 28(3):1 402-1 409.
[18] 李明亮, 刘平, 刘新宽, 等.时效处理对冷轧C194铜合金性能的影响[J].特种铸造及有色合金, 2017, 37(4):457-460.
[19] 敬云兵, 彭冬冬, 甘春雷, 等.退火温度对Al2O3/Cu弥散强化铜合金组织性能的影响[J].特种铸造及有色合金, 2021, 41(12):1 524-1 528.
[20] 李思远.不同热处理状态下Cu-Ti合金在S2-污染海水中的腐蚀行为研究[D].太原:太原理工大学, 2021.
[21] 杨冉, 文九巴, 周延军, 等.热处理对Cu-6.9Ni-2.97Al-0.99Fe-1.06Mn合金组织和腐蚀性能的影响[J].材料热处理学报, 2019, 40(12):74-78.
[22] VRSALOVIC L, IVANIC I, KOZUH S, et al.Effect of heat treatment on corrosion properties of CuAlNi shape memory alloy[J].Transactions of Nonferrous Metals Society of China, 2018, 28(6):1 149-1 156.
[23] 王耀, 杨正海, 杨倩倩, 等.时效温度和Cr含量对Cu-Ag-Cr合金性能的影响[J].特种铸造及有色合金, 2021, 41(3):353-358.
[24] 韩俊青, 武玉英, 胡家琨, 等.B在铜合金中的应用[J].特种铸造及有色合金, 2021, 41(6):718-721.
[25] 冷翔.合金元素(Fe、Mn、La)对B10白铜合金耐蚀性能的影响[D].江西赣州:江西理工大学, 2020.
[26] SHAIK M A, SYED K H, GOLLA B R.Electrochemical behavior of mechanically alloyed hard Cu-Al alloys in marine environment[J].Corrosion Science, 2019, 153:249-257.
[27] WEI H, HOU L F, CUI Y C, et al.Effect of Ti content on corrosion behavior of Cu-Ti alloys in 3.5% NaCl solution[J].Transactions of Nonferrous Metals Society of China, 2018, 28(4):669-675.
[28] 杨倩倩, 徐宇, 赵墨林, 等.添加微量Cr、Al、Sn和Ni对铜合金性能的影响[J].特种铸造及有色合金, 2020, 40(6):690-693.
[29] 谭文龙.添加Co对Cu-Ni-Si合金性能的影响[J].特种铸造及有色合金, 2020, 40(11):1 306-1 308.
[30] 姜佳鑫, 温永清.稀土在铜及铜合金中的作用及应用[J].稀土信息, 2021 (5):12-18.
[31] 孙军伟.稀土元素Ce对CuNi10Fe1.5Mn合金组织和性能的影响研究[D].江西赣州:江西理工大学, 2019.

基金

国家自然科学基金资助项目(52001236); 江西省重大科技研发专项基金资助项目(20212AAE01003)
PDF(971 KB)

812

Accesses

0

Citation

Detail

段落导航
相关文章

/