电分析化学法检测食品中有机合成色素的应用进展

牛家华, 王勇, 卢明华

理化检验-化学分册 ›› 2020, Vol. 56 ›› Issue (10) : 1137-1144.

PDF(825 KB)
PDF(825 KB)
理化检验-化学分册 ›› 2020, Vol. 56 ›› Issue (10) : 1137-1144. DOI: 10.11973/lhjy-hx202010019
综述

电分析化学法检测食品中有机合成色素的应用进展

  • 牛家华1, 王勇2, 卢明华3
作者信息 +

Advances of Application of Electroanalytical Chemistry in Detection of Organic Synthetic Pigments in Food

  • NIU Jiahua1, WANG Yong2, LU Minghua3
Author information +
文章历史 +

摘要

综述了近几年来电分析化学法检测食品中有机合成色素的应用进展,重点讨论了金属纳米材料、金属氧化物材料、碳材料(包括石墨烯、碳纳米管等)、聚合物材料等在电分析化学应用中的优缺点,并简要介绍了其应用前景(引用文献73篇)。

Abstract

A review on advances of application of electroanalytical chemistry in detection of organic synthetic pigments in food in recent years was presented. The advantages and disadvantages of metal nanomaterials, metal oxide materials, carbon materials (including graphene, carbon nanotubes and so on), polymer materials and so on in application of electroanalytical chemistry were discussed specially. Future application of electroanalytical chemistry was briefly given (73 ref. cited).

[WT5HZ]

关键词

电分析化学法 / 食品 / 有机合成色素 / 检测 / 综述

Key words

electroanalytical chemistry / food / organic synthetic pigment / detection / review

引用本文

导出引用
牛家华, 王勇, 卢明华. 电分析化学法检测食品中有机合成色素的应用进展[J]. 理化检验-化学分册, 2020, 56(10): 1137-1144 https://doi.org/10.11973/lhjy-hx202010019
NIU Jiahua, WANG Yong, LU Minghua. Advances of Application of Electroanalytical Chemistry in Detection of Organic Synthetic Pigments in Food[J]. Physical Testing and Chemical Analysis Part B:Chemical Analgsis, 2020, 56(10): 1137-1144 https://doi.org/10.11973/lhjy-hx202010019

参考文献

[1] 戚平,刘佳,毛新武,等.食品中色素检测的研究进展[J].食品与机械, 2018,34(11):167-173.
[2] 黄文氢,刘静.液体核磁共振法快速检测食品中的3种食用合成色素[J].分析试验室, 2018,37(7):848-854.
[3] DUDKINA A A, VOLGINA T N, SARANCHINA N V, et al. Colorimetric determination of food colourants using solid phase extraction into polymethacrylate matrix[J]. Talanta, 2019,202:186-189.
[4] FARAJI M. Determination of some red dyes in food samples using a hydrophobic deep eutectic solvent-based vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography[J]. Journal of Chromatography A, 2019,1591:15-23.
[5] BERLINA A N, ZHERDEV A V, DZANTIEV B B. ELISA and lateral flow immunoassay for the detection of food colorants:State of the art[J]. Critical Reviews in Analytical Chemistry, 2019,49(3):209-223.
[6] 王登飞,黄智辉,郑俊超,等.软饮料中人工合成色素快速测定试纸条的研制[J].理化检验-化学分册, 2012,48(4):445-448.
[7] CHEN H, DENG X J, DING G S, et al. The synthesis,adsorption mechanism and application of polyethyleneimine functionalized magnetic nanoparticles for the analysis of synthetic colorants in candies and beverages[J]. Food Chemistry, 2019,293:340-347.
[8] 刘谦,李熙,吴新欣,等.着色剂检测方法研究[J].理化检验-化学分册, 2017,53(6):693-696.
[9] 田宏.纳米材料/氨基酸修饰电极的制备及在食用合成色素分析中的应用[D].沈阳:沈阳师范大学, 2018.
[10] IAMMARINO M, MENTANA A, CENTONZE D, et al. Simultaneous determination of twelve dyes in meat products:Development and validation of an analytical method based on HPLC-UV-diode array detection[J]. Food Chemistry, 2019,285:1-9.
[11] GUERRA E, ALVAREZ-RIVERA G, LLOMPART M, et al. Simultaneous determination of preservatives and synthetic dyes in cosmetics by single-step vortex extraction and clean-up followed by liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2018,188:251-258.
[12] KIM H J, LEE M J, PARK H J, et al. Simultaneous determination of synthetic food additives in kimchi by liquid chromatography-electrospray tandem mass spectrometry[J]. Food Science and Biotechnology, 2018,27(3):877-882.
[13] AI Y J, LIANG P, WU Y X, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and surface-enhanced Raman scattering (SERS)[J]. Food Chemistry, 2018,241:427-433.
[14] WANG Y, MU Y X, HU J, et al. Rapid, one-pot, protein-mediated green synthesis of water-soluble fluorescent nickel nanoclusters for sensitive and selective detection of tartrazine[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019,214:445-450.
[15] LI Y P, JIA Y, ZENG Q, et al. A multifunctional sensor for selective and sensitive detection of vitamin B12 and tartrazine by Förster resonance energy transfer[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019,211:178-188.
[16] WANG P, HU X Z, CHENG Q, et al. Electrochemical detection of amaranth in food based on the enhancement effect of carbon nanotube film[J]. Journal of Agricultural and Food Chemistry, 2010,58(23):12112-12116.
[17] YI J, ZENG L W, WU Q Y, et al. Sensitive simultaneous determination of synthetic food colorants in preserved fruit samples by capillary electrophoresis with contactless conductivity detection[J]. Food Analytical Methods, 2018,11(6):1608-1618.
[18] VIDAL M, GARCIA-ARRONA R, BORDAGARAY A, et al. Simultaneous determination of color additives tartrazine and allura red in food products by digital image analysis[J]. Talanta, 2018,184:58-64.
[19] 高鸿,汪尔康,章咏华,等.电分析化学三十年[J].分析化学, 1979,7(5):329-356.
[20] WANG Y, XIONG Y Y, QU J Y, et al. Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites[J]. Sensors and Actuators B:Chemical, 2016,223:501-508.
[21] WANG H J, ZHANG S Y, LI S F, et al. Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol[J]. Talanta, 2018,178:188-194.
[22] EMAMIAN R, EBRAHIMI M, KARIMI-MALEH H. Electrochemical platform based on synergic effect of Fe3O4/SWCNTs and 1-ethyl-3-methyl imidazolium chloride as sensor for determination of xanthine and theophylline in food samples[J]. Journal of the Electrochemical Society, 2018,165(14):762-766.
[23] YANG X F, SUN D, ZENG R C, et al. Trace analysis of ponceau 4R based on the signal amplification of copper-based metal-organic framework modified electrode[J]. Journal of Electroanalytical Chemistry, 2017,794:229-234.
[24] JI L D, CHENG Q, WU K B, et al. Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of Sunset yellow and Tartrazine[J]. Sensors and Actuators B:Chemical, 2016,231:12-17.
[25] TVORYNSKA S, JOSYPCUK B, BAREK J, et al.Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and allura red AC on amalgam electrodes[J]. Food Analytical Methods, 2019,12(2):409-421.
[26] QU J Y, LOU T F, WANG Y, et al. Determination of catechol by a novel laccase biosensor based on zinc-oxide sol-gel[J]. Analytical Letters, 2015,48(12):1842-1853.
[27] ZHANG Y L, XIAO S X, XIE J L, et al. Simultaneous electrochemical determination of catechol and hydroquinone based on graphene-TiO2 nanocomposite modified glassy carbon electrode[J]. Sensors and Actuators B:Chemical, 2014,204:102-108.
[28] QU J Y, DONG Y, WANG Y, et al. A novel sensor based on Fe3O4 nanoparticles-multiwalled carbon nanotubes composite film for determination of nitrite[J]. Sensing and Bio-Sensing Research, 2015,3:74-78.
[29] YA Y, JIANG C W, LI T, et al. A zinc oxide nanoflower-based electrochemical sensor for trace detection of sunset yellow[J]. Sensors, 2017,17(3):545-553.
[30] DORRAJI P S, JALALI F. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine[J]. Food Chemistry, 2017,227:73-77.
[31] MARQUEZ-MARIÑO K, PENAGOS-LLANOS J, GARCÍA-BELTRÁN O, et al. Development of a novel electrochemical sensor based on a carbon paste electrode decorated with Nd2O3 for the simultaneous detection of tartrazine and sunset yellow[J]. Electroanalysis, 2018,30(11):2760-2767.
[32] HUANG J Z, ZENG Q, WANG L S. Ultrasensitive electrochemical determination of Ponceau 4R with a novel ε-MnO2 microspheres/chitosan modified glassy carbon electrode[J]. Electrochimica Acta, 2016,206:176-183.
[33] PENAGOS-LLANOS J, GARCÍA-BELTRÁN O, CALDERÓN J A, et al. Carbon paste composite with Co3O4 as a new electrochemical sensor for the detection of allura red by reduction[J]. Electroanalysis, 2019,31(4):695-703.
[34] SHEIKHSHOAIE M, KARIMI-MALEH H, SHEIKHSHOAIE I, et al. Voltammetric amplified sensor employing RuO2 nano-road and room temperature ionic liquid for amaranth analysis in food samples[J]. Journal of Molecular Liquids, 2017,229:489-494.
[35] SHAO Y Y, WANG J, WU H, et al. Graphene based electrochemical sensors and biosensors:A review[J]. Electroanalysis, 2010,22(10):1027-1036.
[36] LUO H X, SHI Z J, LI N Q, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J]. Analytical Chemistry, 2001,73(5):915-920.
[37] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006,442:282-286.
[38] 饶红红,薛中华,王雪梅,等.基于电化学还原氧化石墨烯的电化学传感[J].化学进展, 2016,28(2):337-352.
[39] 朱济锋,黎学思,周大明,等.基于电化学还原氧化石墨烯的电化学DNA生物传感器[J].传感器与微系统, 2019,38(6):75-78.
[40] DE MORAES P, HUDARI F, SILVA J, et al. Enhanced detection of ponceau 4R food dye by glassy carbon electrode modified with reduced graphene oxide[J]. Journal of the Brazilian Chemical Society, DOI:10.21577/0103-5053.20170219.
[41] JAMPASA S, SIANGPROH W, DUANGMAL K, et al. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages[J]. Talanta, 2016,160:113-124.
[42] MAGERUSAN L, POGACEAN F, COROS M, et al. Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection[J]. Electrochimica Acta, 2018,283:578-589.
[43] 张金磊,凌绍明,段艳,等.石墨烯量子点修饰玻碳电极对日落黄的电化学检测[J].化学传感器, 2017,37(2):60-64.
[44] 独涛,张洪迪,范同祥.石墨烯/金属复合材料的研究进展[J].材料导报, 2015,29(3):121-129.
[45] DENG K Q, LI C X, LI X F, et al. Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide[J]. Journal of Electroanalytical Chemistry, 2016,780:296-302.
[46] CUI M Z, WANG M L, XU B S, et al. Determination of allura red using composites of water-dispersible reduced graphene oxide-loaded Au nanoparticles based on ionic liquid[J]. International Journal of Environmental Analytical Chemistry, 2016,96(12):1117-1127.
[47] WANG J, YANG B B, ZHANG K, et al. Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites[J]. Journal of Colloid and Interface Science, 2016,481:229-235.
[48] GAO Y D, WANG L, ZHANG Y L, et al. Electrochemical behavior of amaranth and its sensitive determination based on Pd-doped polyelectrolyte functionalized graphene modified electrode[J]. Talanta, 2017,168:146-151.
[49] LI L Q, ZHENG H J, GUO L L, et al. A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink[J]. Talanta, 2019,197:68-76.
[50] YU L L, SHI M X, YUE X, et al. Detection of allura red based on the composite of poly (diallyldimethylammonium chloride) functionalized graphene and nickel nanoparticles modified electrode[J]. Sensors and Actuators B:Chemical, 2016,225:398-404.
[51] LI L Q, ZHENG H J, GUO L L, et al. Construction of novel electrochemical sensors based on bimetallic nanoparticle functionalized graphene for determination of sunset yellow in soft drink[J]. Journal of Electroanalytical Chemistry, 2019,833:393-400.
[52] JING S S, ZHENG H J, ZHAO L, et al. Electrochemical sensor based on poly(sodium 4-styrenesulfonate) functionalized graphene and Co3O4 nanoparticle clusters for detection of amaranth in soft drinks[J]. Food Analytical Methods, 2017,10(9):3149-3157.
[53] HE Q G, LIU J, LIU X P, et al. Novel electrochemical sensors based on cuprous oxide-electrochemically reduced graphene oxide nanocomposites modified electrode toward sensitive detection of sunset yellow[J]. Molecules, 2018,23(9):2130-2144.
[54] DING Z Y, DENG P H, WU Y Y, et al. A novel modified electrode for detection of the food colorant sunset yellow based on nanohybrid of MnO2 nanorods-decorated electrochemically reduced graphene oxide[J]. Molecules, 2019,24(6):1178-1192.
[55] HE Q G, LIU J, LIU X P, et al. Sensitive and selective detection of tartrazine based on TiO2-electrochemically reduced graphene oxide composite-modified electrodes[J]. Sensors, 2018,18(6):1911-1922.
[56] POGACEAN F, ROSU M C, COROS M, et al. Graphene/TiO2-Ag based composites used as sensitive electrode materials for amaranth electrochemical detection and degradation[J]. Journal of the Electrochemical Society, 2018,165(8):3054-3059.
[57] 兰小淞,吕延成.碳纳米管技术在食品安全检测中的应用进展[J].食品科学, 2014,35(21):344-349.
[58] JIANG L C, ZHANG W D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode[J]. Biosensors and Bioelectronics, 2010,25(6):1402-1407.
[59] SIERRA-ROSALES P, TOLEDO-NEIRA C, SQUELLA J A. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs[J]. Sensors and Actuators B:Chemical, 2017,240:1257-1264.
[60] SIERRA-ROSALES P, TOLEDO-NEIRA C, ORTUZAR-SALAZAR P, et al. MWCNT-modified electrode for voltammetric determination of allura red and brilliant blue FCF in isotonic sport drinks[J]. Electroanalysis, 2019,31(5):883-890.
[61] NUÑEZ-DALLOS N, MACÍAS M A, GARCÍA-BELTRÁN O, et al. Voltammetric determination of amaranth and tartrazine with a new double-stranded copper(Ⅰ) helicate-single-walled carbon nanotube modified screen printed electrode[J]. Journal of Electroanalytical Chemistry, 2018,822:95-104.
[62] BIJAD M, KARIMI-MALEH H, FARSI M, et al. Simultaneous determination of amaranth and nitrite in foodstuffs via electrochemical sensor based on carbon paste electrode modified with CuO/SWCNTs and room temperature ionic liquid[J]. Food Analytical Methods, 2017,10(11):3773-3780.
[63] QIU X L, LU L M, LENG J, et al. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine[J]. Food Chemistry, 2016,190:889-895.
[64] 徐庆君.基于功能聚合物电化学生物传感器的制备及其检测应用[D].青岛:青岛科技大学, 2018.
[65] MANJUNATHA J G. A novel voltammetric method for the enhanced detection of the food additive tartrazine using an electrochemical sensor[J]. Heliyon, DOI:10.1016/j.heliyon.2018.e00986.
[66] ZHAO X Y, LIU Y Z, ZUO J J, et al. Rapid and sensitive determination of tartrazine using a molecularly imprinted copolymer modified carbon electrode (MIP-PmDB/PoPD-GCE)[J]. Journal of Electroanalytical Chemistry, 2017,785:90-95.
[67] SAKTHIVEL M, SIVAKUMAR M, CHEN S M, et al. Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) on terbium hexacyanoferrate for sensitive determination of tartrazine[J]. Sensors and Actuators B:Chemical, 2018,256:195-203.
[68] 胡晴晴,陶姣姣,刘旭,等.聚L-精氨酸/石墨烯修饰电极测定诱惑红[J].化学传感器, 2016,36(2):57-61.
[69] ARVAND M, GASKARMAHALLEH A A, HEMMATI S. Enhanced-oxidation and highly sensitive detection of tartrazine in foodstuffs via new platform based on poly(5-sulfosalicylic acid)/Cu(OH)2 nanoparticles[J]. Food Analytical Methods, 2017,10(7):2241-2251.
[70] 张超,张留,吉杨萱,等.离子液体修饰膨胀石墨糊电极对亮蓝的电化学检测[J].常州大学学报(自然科学版), 2016,28(5):34-39.
[71] PEÑA-GONZALEZ A, EDGAR N, JOSÉ GARCÍA O. Detection of sunset yellow by adsorption voltammetry at glassy carbon electrode modified with chitosan[J]. International Journal of Electrochemical Science, 2018,13:5005-5015.
[72] RARIL C, MANJUNATHA J G, NANJUNDASWAMY L, et al. Surfactant immobilized electrochemical sensor for the detection of indigotine[J]. Analytical & Bioanalytical Electrochemistry, 2018,10(11):1479-1490.
[73] MAZLAN S, LEE Y, HANIFAH S. A new laccase based biosensor for tartrazine[J]. Sensors, 2017,17(12):2859-2870.

基金

河南省高校科技创新人才支持计划(17HASTIT003);国家自然科学基金(21477033)
PDF(825 KB)

1086

Accesses

0

Citation

Detail

段落导航
相关文章

/