微波消解-电感耦合等离子体质谱法测定镍精矿中Ga、Ge、Se、Cd、In、Te、La和Tl

赵小龙, 燕娜, 侍金敏, 赵生国, 何艳

理化检验-化学分册 ›› 2017, Vol. 53 ›› Issue (9) : 1031-1035.

PDF(811 KB)
PDF(811 KB)
理化检验-化学分册 ›› 2017, Vol. 53 ›› Issue (9) : 1031-1035. DOI: 10.11973/lhjy-hx201709008
工作简报

微波消解-电感耦合等离子体质谱法测定镍精矿中Ga、Ge、Se、Cd、In、Te、La和Tl

  • 赵小龙1, 燕娜2, 侍金敏2, 赵生国2, 何艳3
作者信息 +

Determination of Ga, Ge, Se, Cd, In, Te, La and Tl in Nickel Concentrates by ICP-MS Combined with Microwave Digestion

  • ZHAO Xiaolong1, YAN Na2, SHI Jinmin2, ZHAO Shengguo2, HE Yan3
Author information +
文章历史 +

摘要

样品经硝酸-盐酸-氢氟酸-过氧化氢(3+1+1+1)混合液微波消解后,加入硝酸(1+1)溶液溶解盐类,定容后供电感耦合等离子体质谱分析。以103Rh和232Th为内标,采用校正方程消除质谱干扰。Se的线性范围为0.500~500.0 μg·L-1,其他7种元素的线性范围均为0.050~100.0 μg·L-1,8种元素的检出限(3s)在0.01~0.8 mg·kg-1之间。加标回收率在90.9%~113%之间,测定值的相对标准偏差(n=4)在0.90%~7.7%之间。方法用于测定镍精矿标准物质中Cd,测定值与认定值相符。

Abstract

The sample was digested by microwave with the mixed solution of HNO3、HCl、HF and H2O2 (3+1+1+1), then HNO3 (1+1) solution was added to dissolve the salt and the solution was diluted for ICP-MS analysis with 103Rh and 232Th as internal standard. The calibration equation was used to eliminate mass spectral interference. The linearity range of Se and the other 7 elements were 0.500-500.0, 0.050-100.0 μg·L-1, respectively. The detection limits (3s) of 8 elements were in the range of 0.01-0.8 mg·kg-1. Recovery rates obtained by standard addition method were in the range of 90.9%-113%, and RSDs (n=4) were in the range of 0.90%-7.7%. The proposed method was applied to the determination of Cd in nickel concentrate standard substances, giving results in agreement with the certified values.

关键词

电感耦合等离子体质谱法 / 微波消解 / 稀散元素 / 镍精矿

Key words

ICP-MS / microwave digestion / rare and dispersed element / nickel concentrate

引用本文

导出引用
赵小龙, 燕娜, 侍金敏, 赵生国, 何艳. 微波消解-电感耦合等离子体质谱法测定镍精矿中Ga、Ge、Se、Cd、In、Te、La和Tl[J]. 理化检验-化学分册, 2017, 53(9): 1031-1035 https://doi.org/10.11973/lhjy-hx201709008
ZHAO Xiaolong, YAN Na, SHI Jinmin, ZHAO Shengguo, HE Yan. Determination of Ga, Ge, Se, Cd, In, Te, La and Tl in Nickel Concentrates by ICP-MS Combined with Microwave Digestion[J]. Physical Testing and Chemical Analysis Part B:Chemical Analgsis, 2017, 53(9): 1031-1035 https://doi.org/10.11973/lhjy-hx201709008

参考文献

[1] 程秀花,唐南安,张明祖,等.稀有分散元素分析方法的研究进展[J].理化检验-化学分册, 2013,49(6):757-764.
[2] 燕娜,赵生国,赵伟,等.微波消解-电感耦合等离子体质谱测定铜精矿中7种稀有金属元素[J].岩矿测试, 2014,33(2):197-202.
[3] 汤志勇,金泽祥,梁飞,等.萃取富集-ICP-AES测定地质样品中痕量镓铟铊[J].岩矿测试, 1991,10(2):100-102.
[4] 欧阳开,龚琦,洪欣.2-(5-溴-吡啶偶氮)-5-二乙氨基苯酚改性硅胶富集石墨炉原子吸收光谱法测定痕量铟[J].冶金分析, 2007,27(8):47-49.
[5] 董迈青,谢海东,彭秀峰,等.泡塑富集-石墨炉原子吸收光谱法测定地质样品中微量铊[J].光谱实验室, 2010,27(4):1560-1564.
[6] 徐进力,邢夏,郝志红,等.聚氨酯泡塑吸附-电感耦合等离子体质谱法测定地球化学样品中的微量铊[J].岩矿测试, 2012,31(3):430-433.
[7] 鲍长利,程信良,刘春华,等.甲基异丁酮-N,N-二甲基甲酰胺萃取石墨炉原子吸收法测定植物样品中微量锗[J].分析化学, 1992,20(4):429-432.
[8] 李志伟,邰自安,任文岩,等.微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素[J].岩矿测试, 2010,29(3):259-262.
[9] 《岩石矿物分析》编委会.岩石矿物分析(第三分册)[M].4版.北京:地质出版社, 2011.
[10] 李国榕,王亚平,孙元方,等.电感耦合等离子体质谱法测定地质样品中稀散元素铬镓铟碲铊[J].岩矿测试, 2010,29(3):255-258.
[11] 李刚,曹小燕.电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正[J].岩矿测试, 2008,27(3):197-200.
[12] 熊英,吴赫,王龙山.电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除[J].岩矿测试, 2011,30(1):7-11.
[13] 张勤,刘亚轩,吴健玲.电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊[J].岩矿测试, 2003,22(1):21-27.
[14] 赵小学,张霖琳,张建平,等.ICP-MS在环境分析中的质谱干扰及其消除[J].中国环境监测, 2014,30(3):101-106.

基金

国家自然科学基金(21462039);国家质检总局科研项目(2013IK001);甘肃检验检疫局科技计划项目(2014GK004)
PDF(811 KB)

158

Accesses

0

Citation

Detail

段落导航
相关文章

/