基于示教和视觉校正的机器人自适应去毛刺系统

郭阿敏, 习俊通, 于津伟

组合机床与自动化加工技术 ›› 2021, Vol. 0 ›› Issue (11) : 91-95.

PDF(1483 KB)
PDF(1483 KB)
组合机床与自动化加工技术 ›› 2021, Vol. 0 ›› Issue (11) : 91-95. DOI: 10.13462/j.cnki.mmtamt.2021.11.022
控制与检测

基于示教和视觉校正的机器人自适应去毛刺系统

  • 郭阿敏1, 习俊通1, 于津伟2
作者信息 +

Adaptive Robotic Deburring System Based on Teaching and Visual Correction

  • GUO A-min1, XI Jun-tong1, YU Jin-wei2
Author information +
文章历史 +

摘要

针对机器人自动化去毛刺过程中轨迹示教工作繁琐、工件存在定位误差等问题,设计了一种基于激光视觉传感器的机器人自适应去毛刺系统。首先,进行机器人手眼标定,将视觉传感器测量得到的工件表面三维点云从测量坐标系转换到机器人基坐标系下;其次,对工件进行扫描,分别获取参考工件和当前工件的三维点云数据,通过ICP点云配准算法计算得到上述两者的位姿变换矩阵,根据这个变换矩阵可对参考工件的去毛刺示教轨迹进行修正,以获取匹配当前工件的去毛刺轨迹,实现机器人自适应自动化去毛刺。实验结果表明,该系统能够很好的解决去毛刺过程中因工件摆放误差、工装误差和工件标定误差等造成的机器人加工轨迹偏差,质量稳定可靠,工作效率大大提高,尤其适合大批量生产线。

Abstract

Aiming at the problems of tedious trajectory teaching and positioning error of workpiece in the process of robot automatic deburring, an adaptive robotic deburring system based on laser vision sensor is designed. Firstly, the robot hand-eye calibration is carried out, and the 3D point cloud of the workpiece surface measured by the vision sensor is transformed from the measurement coordinate system to the robot base coordinate system. Then the workpiece is scanned, and the 3D point cloud data of the reference workpiece and the current workpiece are obtained respectively. The pose transformation matrix of the above two parts is calculated by ICP point cloud registration algorithm. According to the transformation matrix, the deburring teaching track of the reference workpiece is modified to obtain the deburring track matching the current workpiece, and the robot adaptive automatic deburring is realized. The experimental results show that the system can solve the robot machining trajectory deviation caused by workpiece placement error, tooling error and workpiece calibration error in deburring process. The quality is stable and reliable, and the work efficiency is greatly improved. It is especially suitable for mass production line.

关键词

机器人去毛刺 / 结构光测量 / 手眼标定 / ICP / 轨迹修正

Key words

robot deburring / struct light / hand-eye calibration / ICP / path correction

引用本文

导出引用
郭阿敏, 习俊通, 于津伟. 基于示教和视觉校正的机器人自适应去毛刺系统[J]. 组合机床与自动化加工技术, 2021, 0(11): 91-95 https://doi.org/10.13462/j.cnki.mmtamt.2021.11.022
GUO A-min, XI Jun-tong, YU Jin-wei. Adaptive Robotic Deburring System Based on Teaching and Visual Correction[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, 0(11): 91-95 https://doi.org/10.13462/j.cnki.mmtamt.2021.11.022

参考文献

[1] 王连生.基于机器视觉的工业机器人去毛刺加工效率优化研究[D].杭州:浙江大学, 2017.
[2] 王哲龙.毛刺的危害和去毛刺新技术的应用[J]. 川汽科技, 1996(1):5-9.
[3] Srinivasan H, Harrysson O L A, Wysk R A. Automatic part localization in a CNC machine coordinate system by means of 3D scans[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(5-8):1127-1138.
[4] Song H C, Kim B S, Song J B. Tool path generation based on matching between teaching points and CAD model for robotic deburring[C]//Advanced Intelligent Mechatronics (AIM), 2012 IEEE/ASME International Conference IEEE, 2012.
[5] 陈庚, 向华, 禹辉, 等. 一种基于3D激光扫描仪的机器人去毛刺清理方法:中国, CN201811459512.9[P].2019-04-12.
[6] ØysteinSkotheim, Lind M, PålYstgaard, et al. A flexible 3d object localization system for industrial part handling[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems IEEE, 2014.
[7] Strobl K H, Hirzinger G. Optimal hand-eye calibration[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems IEEE, 2007.
[8] 张洪瑶, 李论, 周波, 等.机器人手眼标定及其精度分析的研究[J].组合机床与自动化加工技术, 2018(1):69-72.
[9] Besl P J, Mckay H D. A method for registration of 3-D shapes. IEEE trans pattern anal mach intell[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
[10] 戴静兰, 陈志杨, 叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报, 2007(3):517-521.
[11] 周春艳, 李勇, 邹峥嵘.三维点云ICP算法改进研究[J].计算机技术与发展, 2011, 21(8):75-77, 81.

基金

工信部资助项目([2018]473号)
PDF(1483 KB)

201

Accesses

0

Citation

Detail

段落导航
相关文章

/