不同梯度变化方式的不规则多孔结构设计与力学性能分析

汤永锋, 路平, 刘斌, 江开勇, 颜丙功, 刘嘉伟, 韩伟,

中国机械工程 ›› 2022, Vol. 33 ›› Issue (23) : 2859-2866.

PDF(9383 KB)
PDF(9383 KB)
中国机械工程 ›› 2022, Vol. 33 ›› Issue (23) : 2859-2866. DOI: 10.3969/j.issn.1004-132X.2022.23.010
宏微观跨尺度设计

不同梯度变化方式的不规则多孔结构设计与力学性能分析

  • 汤永锋1,2;路平1,2;刘斌1,2;江开勇1,2;颜丙功1,2;刘嘉伟1,2;韩伟1,2
作者信息 +

Design and Mechanics Property Analysis for Different Graded Irregular Porous Structures

  • TANG Yongfeng1,2;LU Ping1,2;LIU Bin1,2;JIANG Kaiyong1,2;YAN Binggong1,2;LIU Jiawei1,2;HAN Wei1,2
Author information +
文章历史 +

摘要

基于Voronoi图设计了4种不同梯度变化方式的不规则多孔结构,通过光固化成形工艺制备了这4种梯度多孔结构。对这4种梯度多孔结构分别进行了纵向(载荷方向平行于梯度方向)和横向(载荷方向垂直于梯度方向)压缩实验,研究其变形特点和力学性能。结果表明,梯度多孔结构在横向压缩时的变形特点与均匀多孔结构相似,纵向压缩时则表现出逐层坍塌的变形特点。在孔隙率相近的情况下,不同的梯度变化方式能够影响纵向压缩时的力学性能,对横向压缩的力学性能基本没有影响。降低梯度多孔结构的平均孔隙率可以提高结构力学性能。最后通过等应力复合模型和Voigt模型预测了梯度多孔结构纵向和横向压缩的弹性模量,预测结果与实验结果的相对误差基本都在10%以内。

Abstract

 Four different type graded irregular porous structures were designed based on the Voronoi diagram, and the four graded porous structure examples were prepared by the stereolithography molding technology. The longitudinal(load direction parallels to the graded direction)and transverse(load direction perpendiculars to the graded direction)compression tests were carried out on the four graded porous structures to study their deformation characteristics and mechanics properties. The results show that the deformation characteristics of the graded porous structures are similar to that of the uniform porous structure during transverse compression processes, and the deformation characteristics of layer-by-layer collapse are exhibited during longitudinal compression processes. In the case of similar porosity, different graded types may affect the mechanics properties in the longitudinal compression processes but have little effect on the mechanics properties in the transverse compression processes. Decreasing the average porosity of the graded porous structures may improve the mechanics properties of the structures. Finally, combining the iso-stress composite model and the Voigt model, the elastic modulus of the graded porous structures were predicted in the longitudinal and transverse compression processes respectively, and most of the relative errors between the predicted results and the experimental ones are less than 10%. 

关键词

Voronoi图;梯度多孔结构;变形特点;力学性能

Key words

 Voronoi diagram; graded porous structure; deformation characteristics; mechanics property

引用本文

导出引用
汤永锋, 路平, 刘斌, 江开勇, 颜丙功, 刘嘉伟, 韩伟,. 不同梯度变化方式的不规则多孔结构设计与力学性能分析[J]. 中国机械工程, 2022, 33(23): 2859-2866 https://doi.org/10.3969/j.issn.1004-132X.2022.23.010
TANG Yongfeng, LU Ping, LIU Bin, JIANG Kaiyong, YAN Binggong, LIU Jiawei, HAN Wei,. Design and Mechanics Property Analysis for Different Graded Irregular Porous Structures[J]. China Mechanical Engineering, 2022, 33(23): 2859-2866 https://doi.org/10.3969/j.issn.1004-132X.2022.23.010

参考文献

[1]GIBSON L J, ASHBY M F. Cellular Solids:Structure and Properties[M]. Cambridge:Cambridge University Press, 1997. 
[2]REZWAN K, CHEN Q Z, BLAKER J J, et al. Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering[J]. Biomaterials, 2006, 27(18):3413-3431. 
[3]高芮宁, 熊胤泽, 张航, 等. SLM制备径向梯度多孔钛/钽的力学性能及生物相容性[J]. 稀有金属材料与工程, 2021, 50(1):249-254. 
GAO Ruining, XIONG Yinze, ZHANG Hang, et al. Mechanical Properties and Biocompatibilities of Radially Graded Porous Titanium/Tantalum Fabricated by Selective Laser Melting[J]. Rare Metal Materials and Engineering, 2021, 50(1):249-254. 
[4]MOHSENIZADEH M, GASBARRI F, MUNTHER M, et al. Additively-manufactured Lightweight Metamaterials for Energy Absorption[J]. Materials & Design, 2018, 139:521-530. 
[5]纪小刚, 张建安, 栾宇豪, 等. 仿皮肤三维多孔点阵结构压缩吸能性能研究[J]. 机械工程学报, 2021, 57(15):222-230. 
JI Xiaogang, ZHANG Jianan, LUAN Yuhao, et al. Research on Compression Energy Absorption Performance of Skin-like 3D Porous Lattice Structure[J]. Journal of Mechanical Engineering, 2021, 57(15):222-230. 
[6]石志良, 卢小龙, 黄琛, 等. 钛合金植入物梯度孔结构设计及其力学性能[J]. 稀有金属材料与工程, 2019, 48(6):1829-1834. 
SHI Zhiliang, LU Xiaolong, HUANG Chen, et al. Gradient Pore Structure Design and Mechanical Properties of Titanium Alloy Implant[J]. Rare Metal Materials and Engineering, 2019, 48(6):1829-1834. 
[7]高芮宁, 李祥. 径向梯度多孔支架设计与力学性能分析[J]. 机械工程学报, 2021, 57(3):220-226. 
GAO Ruining, LI Xiang. Design and Mechanical Properties Analysis of Radially Graded Porous Scaffolds[J]. Journal of Mechanical Engineering, 2021, 57(3):220-226. 
[8]VAN GRUNSVEN W, HERNANDEZ-NAVA E, REILLY G C, et al. Fabrication and Mechanical Characterisation of Titanium Lattices with Graded Porosity[J]. Metals, 2014, 4(3):401-409. 
[9]ZHANG S, LI C, HOU W, et al. Longitudinal Compression Behavior of Functionally Graded Ti-6Al-4V Meshes[J]. Journal of Materials Science & Technology, 2016, 32(11):1098-1104. 
[10]GMEZ S, VLAD M D, LPEZ J, et al. Design and Properties of 3D Scaffolds for Bone Tissue Engineering[J]. Acta Biomaterialia, 2016, 42:341-350. 
[11]WANG G, SHEN L, ZHAO J, et al. Design and Compressive Behavior of Controllable Irregular Porous Scaffolds:Based on Voronoi-tessellation and for Additive Manufacturing[J]. ACS Biomaterials Science & Engineering, 2018, 4(2):719-727. 
[12]LIU B, CHEN H, CAO W. A Novel Method for Tailoring Elasticity Distributions of Functionally Graded Porous Materials[J]. International Journal of Mechanical Sciences, 2019, 157:457-470. 
[13]BROTHERS A H, DUNAND D C. Mechanical Properties of a Density-graded Replicated Aluminum Foam[J]. Materials Science and Engineering:A, 2008, 489(1/2):439-443. 
[14]SURESH S, MORTENSEN A. Fundamentals of Functionally Graded Materials[M]. London:The Institut of Materials, 1998. 
[15]ELDRED L B, BAKER W P, PALAZOTTO A N. Kelvin-voigt Versus Fractional Derivative Model as Constitutive Relations for Viscoelastic Materials[J]. AIAA Journal, 1995, 33(3):547-550. 
[16]AURENHAMMER F. Voronoi Diagrams:a Survey of a Fundamental Geometric Data Structure[J]. ACM Computing Surveys, 1991, 23(3):345-405. 
[17]ROBERTS A P, GARBOCZI E J. Elastic Properties of Model Random Three-dimensional Open-cell Solids[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(1):33-55. 
[18]YANG L, MERTENS R, FERRUCCI M, et al. Continuous Graded Gyroid Cellular Structures Fabricated by Selective Laser Melting:Design, Manufacturing and Mechanical Properties[J]. Materials & Design, 2019, 162:394-404. 
[19]YU S, SUN J, BAI J. Investigation of Functionally Graded TPMS Structures Fabricated by Additive Manufacturing[J]. Materials & Design, 2019, 182:108021. 
[20]LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive Strain at the Onset of Densification of Cellular Solids[J]. Journal of Cellular Plastics, 2006, 42(5):371-392. 
[21]AVALLE M, BELINGARDI G, MONTANINI R. Characterization of Polymeric Structural Foams under Compressive Impact Loading by Means of Energy-absorption Diagram[J]. International Journal of Impact Engineering, 2001, 25(5):455-472. 
[22]XIONG Y, HAN Z, QIN J, et al. Effects of Porosity Gradient Pattern on Mechanical Performance of Additive Manufactured Ti-6Al-4V Functionally Graded Porous Structure[J]. Materials & Design, 2021, 208:109911.

基金

福建省科技计划引导性项目(2019H0014,2020H0015);国家自然科学基金(52175230);福厦泉国家自主创新示范区省级专项(2019)
PDF(9383 KB)

187

Accesses

0

Citation

Detail

段落导航
相关文章

/