γ-TiAl合金表面TiC渗镀层的摩擦磨损性能

王洪孔,郑可,高洁,于盛旺,黑鸿君,贺志勇

中国表面工程 ›› 2018, Vol. 31 ›› Issue (6) : 28-34.

PDF(2476 KB)
PDF(2476 KB)
中国表面工程 ›› 2018, Vol. 31 ›› Issue (6) : 28-34. DOI: 10.11933/j.issn.1007-9289.20180605001
表面工程

γ-TiAl合金表面TiC渗镀层的摩擦磨损性能

  • 王洪孔,郑可,高洁,于盛旺,黑鸿君,贺志勇
作者信息 +

Wear Properties of TiC Permeation Layer Prepared on γ-TiAl Alloy

  • WANG Hongkong, ZHENG Ke, GAO Jie, YU Shengwang, HEI Hongjun and HE Zhiyong
Author information +
文章历史 +

摘要

为了改善γ-TiAl合金摩擦学性能不理想的问题,采用双辉等离子表面合金化技术在γ-TiAl合金表面制备了TiC渗镀层,并使用扫描电子显微镜(SEM)、辉光放电光谱成分分析仪(GDOES)和X射线衍射仪(XRD)对TiC渗镀层的形貌、化学成分和物相结构进行分析,借助显微硬度计、划痕仪和往复摩擦磨损试验机对渗镀层的表面硬度、结合强度和摩擦磨损性能进行研究。结果表明:在γ-TiAl合金表面形成了纳米结构的TiC渗镀层,其中,沉积层厚约7 μm,扩散层厚约15 μm。渗镀层硬度比基体显著提高,达到2200 HV0.2。渗镀层的摩擦因数和比磨损率都比基体大幅降低,摩擦因数从基体的0.7下降为0.37,比磨损率仅为基体的6.5%,表明制备的TiC渗镀层有效提高了γ-TiAl合金的耐磨性能。

Abstract

To improve the tribological properties of γ-TiAl alloy, a TiC permeation layer on the surface of the γ-TiAl alloy was prepared by double glow plasma surface alloying technique. The microstructure, composition and phase structure of the TiC permeation layer were characterized by scanning electron microscopy (SEM), glow discharge optical emission spectrometer (GDOES) and X-ray diffration (XRD). The surface hardness, adhesion strength and tribological properties of the TiC permeation layer were investigated by using a microhardness tester, a scratch tester and reciprocating friction and a wear tester, respectively. The results show that the TiC permeation layer with nanostructure includes a deposition layer of 7 μm and a diffusion layer of 15 μm. After treatment, the surface hardness of the γ-TiAl alloy is significantly improved, reaching at 2200 HV0.2. Compared with the substrate, the TiC permeation layer has a relatively low friction coefficient and a very low specific wear rate. The friction coefficient decreases from 0.7 of the substrate to 0.37 of the permeation layer. Specifically, the specific wear rate of the permeation layer is only 6.5% of the substrate. Therefore, the TiC permeation layer can effectively enhance the wear resistance of the γ-TiAl alloy.

关键词

γ-TiAl合金;等离子表面合金化技术;TiC渗镀层;摩擦磨损

Key words

γ-TiAl alloy;double glow plasma surface alloying technique;TiC permeation layer;friction and wear

引用本文

导出引用
王洪孔,郑可,高洁,于盛旺,黑鸿君,贺志勇. γ-TiAl合金表面TiC渗镀层的摩擦磨损性能[J]. 中国表面工程, 2018, 31(6): 28-34 https://doi.org/10.11933/j.issn.1007-9289.20180605001
WANG Hongkong, ZHENG Ke, GAO Jie, YU Shengwang, HEI Hongjun and HE Zhiyong. Wear Properties of TiC Permeation Layer Prepared on γ-TiAl Alloy[J]. China Surface Engineering, 2018, 31(6): 28-34 https://doi.org/10.11933/j.issn.1007-9289.20180605001

参考文献

[1] BEWLAY B P, NAG S, SUZUKI A, et al. TiAl alloys in commercial aircraft engines[J]. High Temperature Technology, 2016, 33(4-5):549-559.
[2] 刘娣, 张利军, 米磊, 等. TiAl合金的制备及应用现状[J]. 钛工业进展, 2014(4):11-15 LIU D, ZHANG L J, MI L, et al. Preparation and application status of TiAl alloy[J]. Titanium Industry Progress, 2014(4):11-15(in Chinese)
[3] JABBARIPOUR B, SADEGHI M H, SHABGARD M R, et al. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic[J]. Journal of Manufacturing Processes, 2013, 15(1):56-68.
[4] KYZIOŁ K, ŁUKASZ K, BRZEZINKA G, et al. Structure, characterization and cytotoxicity study on plasma surface modified Ti-6Al-4V and γ-TiAl alloys[J]. Chemical Engineering Journal, 2014, 240:516-526.
[5] KAESTNER P, OLFE J, HE J W, et al. Improvement in the load-bearing capacity and adhesion of TiC coatings on TiAl6V4 by duplex treatment[J]. Surface & Coatings Technology, 2001, 142:928-933.
[6] 贲海峰. TiAl基合金表面改性层组织与摩擦磨损性能研究[D]. 太原:太原理工大学, 2008. BEN H F. Microstructure and wear resistance of the modified layer formed on TiAl based alloy[D]. Taiyuan:Taiyuan University of Technology, 2008(in Chinese).
[7] 贺志勇. TiAl基合金等离子表面渗铬及其抗氧化和耐磨性能研究[D]. 太原:太原理工大学, 2010. HE Z Y. Study on oxidation and wear resistance of TiAl based alloy treated by plasma surface chromium alloying[D]. Taiyuan:Taiyuan University of Technology, 2010(in Chinese).
[8] LIU X, TIAN W, XU W, et al. Wear resistance of TiAl intermetallics by plasma alloying and plasma carburizeation[J]. Surface & Coatings Technology, 2007, 201(9-11):5278-5281.
[9] MATAR S F, ETOURNEAU J. Investigation of the electronic structure of carbon-containing TiAl[J]. Journal of Alloys and Compounds, 1996, 233(1-2):112-120.
[10] 张明阳. 表面改性对钛合金渗碳行为及耐磨性的影响[D]. 长沙:中南大学, 2013. ZHANG M Y. Effect of surface treatment on the carburizing behavior and wear resistance of Ti alloys[D]. Changsha:Central South University, 2013(in Chinese).
[11] 徐重. 等离子表面冶金技术的现状和发展[C]. 第十一届中国热处理活动周论文集, 2016:15. XU Z. Development of plasma surface metallurgy technology[C]. Proceedings of the Eleventh China heat treatment week, 2016:15.
[12] 徐重. 等离子表面冶金技术的现状与发展[J]. 中国工程科学, 2002, 4(2):36-41 XU Z. Development of plasma surface metallurgy technology[J]. Engineering Sciences, 2002, 4(2):36-41(in Chinese)
[13] 徐重, 张艳梅, 张平则, 等. 双层辉光等离子表面冶金技术[J]. 热处理, 2009, 24(1):1-11 XU Z, ZHANG Y M, ZHANG P Z, et al. Double glow plasma surface metallurgy technology[J]. Heat Treatment, 2009, 24(1):1-11(in Chinese)
[14] XU Z. A novel plasma surface metallurgy:Xu-Tec process[J]. Surface & Coatings Technology, 1990, 43(1):1065-1073.
[15] XU Z, LIU X, ZHANG P, et al. Double glow plasma surface alloying and plasma nitriding[J]. Surface & Coatings Technology, 2007, 201(9-11):4822-4825.
[16] 刘阳, 曾令可, 胡晓力, 等. 碳化钛的合成及其应用研究进展[J]. 中国陶瓷, 2002, 38(5):7-10 LIU Y, ZENG L K, HU X L, et al. Syntiesis of TiC and the development of its application[J]. China Ceramics, 2002, 38(5):7-10(in Chinese)
[17] MAHAMOOD R M, AKINLABI E T, SHUKLA M, et al. Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite[J]. Materials & Design, 2013, 50(17):656-666.
[18] SHANAGHI A, CHU P K, ROUHAGHDAM A R S, et al. Structure and corrosion resistance of Ti/TiC coatings fabricated by plasma immersion ion implantation and deposition on nickel-titanium[J]. Surface & Coatings Technology, 2013, 229(9):151-155.
[19] RAJABI A, GHAZALI M J, DAUD A R. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-A review[J]. Materials & Design, 2015, 67:95-106.
[20] 李新. 碳化钛/硅原位反应烧结研究[J]. 热加工工艺, 2013, 42(8):118-120 LI X. Preparation of TiC based material by in-situ reaction sintering[J]. Hot Working Technology, 2013, 42(8):118-120(in Chinese)
[21] RASOOL G, STACK M M. Wear maps for TiC composite based coatings deposited on 303 stainless steel[J]. Tribology International, 2014, 74(4):93-102.
[22] 高洁. 金刚石涂层硬质合金HfC-SiC过渡层制备及结合强度研究[D]. 太原:太原理工大学, 2017. GAO J. Synthesis and adhesion of HfC-SiC interlaters for diamond coated cemented carbides[D]. Taiyuan:Taiyuan University of Technology, 2017(in Chinese).
[23] PEARSON W B, RAYNOR G V. A Handbook of lattice spacings and structures of metals and alloys[J]. Zeitschrift Für Kristallographie, 1961, 115(3-4):319-320.
[24] 应峰, 缪强, 黄俊, 等. 钛合金表面原位合成TiN渗镀层摩擦性能研究[J]. 金属热处理, 2009, 34(9):29-32 YING F, MIAO Q, HUANG J, et al. Tribological property of TiN diffusion coating in-situ synthesized on titanium alloy surface[J]. Heat Treatment of Metals, 2009, 34(9):29-32(in Chinese)
[25] BARNA P B, ADAMIK M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J]. Thin Solid Films, 1998, 317(1-2):27-33.
[26] 魏祥飞, 张平则, 魏东博, 等. γ-TiAl合金表面Cr-W共渗合金层的摩擦磨损性能研究[J]. 金属学报, 2013, 49(11):1406-1410 WEI X F, ZHANG P Z, WEI D B, et al. Friction and wear properties of surface plasma Cr-W alloying layer of γ-TiAl alloy[J]. Acta Metallurgica Sinica, 2013, 49(11):1406-1410(in Chinese)

基金

国家自然科学基金(51601124,51505318);山西省应用基础研究计划面上青年基金(201601D202026)
PDF(2476 KB)

406

Accesses

0

Citation

Detail

段落导航
相关文章

/