氢气流量对大面积金刚石膜沉积的影响

孙祁,汪建华,刘繁,翁俊

中国表面工程 ›› 2018, Vol. 31 ›› Issue (2) : 75-84.

PDF(8454 KB)
PDF(8454 KB)
中国表面工程 ›› 2018, Vol. 31 ›› Issue (2) : 75-84. DOI: 10.11933/j.issn.1007-9289.20171018002
表面工程

氢气流量对大面积金刚石膜沉积的影响

  • 孙祁,汪建华,刘繁,翁俊
作者信息 +

Effects of Hydrogen Flow Rate on Deposition of Large Area Diamond Films

  • SUN Qi, WANG Jian-hua, LIU Fan and WENG Jun
Author information +
文章历史 +

摘要

为了实现大面积金刚石膜的高速均匀沉积,在新型多模微波等离子体装置中,利用微波等离子体(Microwave plasma chemical vapor deposition,MPCVD)技术,对大面积金刚石膜沉积过程中气体流场、电子密度和温度、基团分布及金刚石膜质量进行研究。流场模拟结果表明,多模MPCVD装置在高气体流量下依旧保持良好的流场稳定性。等离子体光谱结果表明,随着氢气流量的上升活性基团的强度上升。氢气流量在400 cm3/min以内时,活性基团可在基底表面对称均匀分布。电子密度和电子温度随着氢气流量的上升先上升后下降,在500 cm3/min达到最大,分别为2.3×1019/m3和1.65 eV。在氢气流量为300 cm3/min时可在直径为100 mm的钼基底上实现大面积金刚石膜的均匀沉积,金刚石膜中心和边缘处拉曼光谱FWHM值为4.39 cm-1和4.51 cm-1,生长速率为5.8 μm/h。

Abstract

In order to achieve the uniform deposition of large area diamond films with the high growth rate, the gas flow field, electron density, electron temperature, the species distribution and the quality of the diamond film were investigated by the microwave plasma chemical vapor deposition (MPCVD) method in a novel self-built overmoded MPCVD device. The gas flow field results indicate that the overmoded MPCVD presents good stability of the gas flow field even at a high gas flow rate. The optical emission spectroscopy (OES) results indicate that the intensities of all chemical radicals increase with the increase of the hydrogen flow rate. The chemical radicals can be systematically distributed along the substrate surface when the gas flow rate is within 400 cm3/min. The electron density and electron temperature first increase and then slightly decrease when the gas flow rate keeps increasing. The maximum values of the electron density and electron temperature are 2.3×1019/m3 and 1.65 eV, respectively, when the hydrogen flow rate is 500 cm3/min. The uniform diamond film is deposited on the molybdenum plate of 100 mm diameter when the hydrogen flow rate is 300 cm3/min. The FWHM value is 4.39 cm-1 and 4.51 cm-1 for the center and verge place of the diamond film, respectively, and the growth rate is 5.8 μm/h.

关键词

微波等离子体化学气相沉积;等离子体光谱;金刚石膜;大面积;均匀沉积

Key words

microwave plasma chemical vapor deposition (MPCVD);optical emission spectroscopy (OES);diamond film;large area;uniform deposition

引用本文

导出引用
孙祁,汪建华,刘繁,翁俊. 氢气流量对大面积金刚石膜沉积的影响[J]. 中国表面工程, 2018, 31(2): 75-84 https://doi.org/10.11933/j.issn.1007-9289.20171018002
SUN Qi, WANG Jian-hua, LIU Fan and WENG Jun. Effects of Hydrogen Flow Rate on Deposition of Large Area Diamond Films[J]. China Surface Engineering, 2018, 31(2): 75-84 https://doi.org/10.11933/j.issn.1007-9289.20171018002

参考文献

[1] MAY P W. Diamond thin films:A 21st-century material[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2000, 358(1766):473-495.
[2] WENG J, WANG J H, DAI S Y, et al. Preparation of diamond films with controllable surface morphology, orientation and quality in an overmoded microwave plasma CVD chamber[J]. Applied Surface Science, 2013, 276(276):529-534.
[3] TALLAIRE A, KASU M, UEDA K, et al. Origin of growth defects in CVD diamond epitaxial films[J]. Diamond & Related Materials, 2008, 17(1):60-65.
[4] CELⅡ F G, JR D W, PURDES A J. Deposition of smooth, oriented diamond films using microwave plasma chemical vapor deposition[J]. Thin Solid Films, 1992, 212(1-2):140-149.
[5] RALCHENKO V, SYCHOV I, VLASOV I, et al. Quality of diamond wafers grown by microwave plasma CVD:Effects of gas flow rate[J]. Diamond & Related Materials, 1999, 8(2-5):189-193.
[6] CHEN W, LU X, YANG Q, et al. Effects of gas flow rate on diamond deposition in a microwave plasma reactor[J]. Thin Solid Films, 2006, 515(4):1970-1975.
[7] SU J, LI Y, LIU Y, et al. Revisiting the gas flow rate effect on diamond films deposition with a new dome-shaped cavity type microwave plasma CVD reactor[J]. Diamond & Related Materials, 2017, 73:99-104.
[8] STEMSCHULTE H, BAUER T, SCHRECK M, et al. Comparison of MWPCVD diamond growth at low and high process gas pressures[J]. Diamond & Related Materials, 2006, 15(4):542-547.
[9] MA J, CHEESMAN A, ASHFOLD M N R, et al. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond[J]. Journal of Applied Physics, 2009, 106(3):113304-581.
[10] 马志斌, 吴建鹏, 陶利平, 等. MPCVD等离子体的发射光谱研究[J]. 光谱学与光谱分析, 2013, 33(9):2562-2565.MA Z B, WU J P, TAO L P, et al. Optical emission spectroscopy of MPCVD plasma[J]. Spectroscopy and Spectral Analysis, 2013, 33(9):2562-2565(in Chinese)
[11] HEMAWAN K W, HEMLEY R J. Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond[J]. Journal of Vacuum Science & Technology A, 2015, 33(6):1-6.
[12] MALLIK A K, BYSAKH S, DUTTA S, et al. Correlation between optical emission spectra and the process parameters of a 915 MHz microwave plasma CVD reactor used for depositing polycrystalline diamond coatings[J]. Sadhana, 2014, 39(4):957-970.
[13] MA J, ASHFOLD M N R, MANKELEVICH Y A. Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition[J]. Journal of Applied Physics, 2009, 105(4):1489-581.
[14] DERKAOUI N, ROND C, GRIES T, et al. Determining electron temperature and electron density in moderate pressure H2/CH4 microwave plasma[J]. Journal of Physics D Applied Physics, 2016, 47(20):205201.
[15] SHERBINI A M E, SHERBINI T M E, HEGAZY H, et al. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(12):1573-1579.
[16] SHERBINI A M E, HEGAZY H, SHERBINI T M E. Measurement of electron density utilizing the Hα-line from laser produced plasma in air[J]. Spectrochimica Acta Part B, 2006, 61:532-539.
[17] BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation[J]. Diamond & Related Materials, 2016, 62(1395):49-57.
[18] NAVEED M A, REHMAN N U, ZEB S, et al. Langmuir probe and spectroscopic studies of RF generated helium-nitrogen mixture plasma[J]. European Physical Journal D, 2008, 47(3):395-402.
[19] BRINKMAN E A, STALDER K R, JEFFRIES J B. Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma[J]. Journal of Applied Physics, 1997, 81(3):1093-1098.
[20] MAHONEY E J D, TRUSCOTT, ASHFOLD M N R et al. Optical emission from C2-anions in microwave-activated CH4/H2 plasma for chemical vapor depostion of diamond[J]. The Journal of Physical Chemical A, 2017, 121:2760-2772.
[21] MANKELEVICH Y A, ASHFOLD M N R, MA J. Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures[J]. Journal of Applied Physics, 2008, 104(11):473.
[22] SUN Q, WANG J, WENG J, et al. Surface structure and electric properties of nitrogen incorporated NCD films[J]. Vacuum, 2017, 137:155-162

基金

湖北省教育厅基金(W20151517)
PDF(8454 KB)

170

Accesses

0

Citation

Detail

段落导航
相关文章

/