乘用车电控空气悬架高度控制策略

刘锦超, 李军伟, 陈斌, 赵雷雷, 李凯

液压与气动 ›› 2024, Vol. 48 ›› Issue (2) : 108-115.

PDF(2901 KB)
PDF(2901 KB)
液压与气动 ›› 2024, Vol. 48 ›› Issue (2) : 108-115. DOI: 10.11832/j.issn.1000-4858.2024.02.014
综合应用

乘用车电控空气悬架高度控制策略

  • 刘锦超1, 李军伟1, 陈斌1, 赵雷雷1, 李凯2
作者信息 +

Height Control Strategy of Electronic Control Air Suspension ofPassenger Car

  • LIU Jin-chao1, LI Jun-wei1, CHEN Bin1, ZHAO Lei-lei1, LI Kai2
Author information +
文章历史 +

摘要

为了提高乘用车电控空气悬架在车身高度调节过程的控制精度,设计了基于粒子群的PID控制器。首先通过对空气悬架系统工作机理的分析,利用AMESim建立单轮空气悬架数学模型,针对车高调节过程中出现的“过充过放”问题,设计了基于粒子群的PID控制器,然后在AMESim-Simulink-Carsim联合仿真平台中建立了整车空气悬架模型对其控制效果进行验证。最后进行了实车测试。结果表明,所设计的基于粒子群的PID控制器在不同工况下的车身高度稳态误差均小于2 mm,且没有出现明显的高度反复调节或者控制超调现象。

Abstract

In order to improve the control precision of electronically controlled air suspension of passenger car in the process of body height adjustment, a PID controller based on particle swarm is designed. Through the analysis of the working mechanism of the air suspension system, the mathematical model of the single-wheel air suspension is established by using AMESim. Aiming at the problem of “overcharging and over-discharging” in the process of vehicle height adjustment, a PID controller based on particle swarm is designed, and a vehicle air suspension model is established based on the AMESim-Simulink-Carsim joint simulation platform to carry out its control effect verify. Finally, a real vehicle test is carried out. The results show that the steady-state errors of the designed PID controller based on particle swarm under different working conditions are less than 2 mm, and there is no obvious phenomenon of repeated height adjustment or control overshoot.

关键词

电控空气悬架 / 粒子群PID算法 / 高度控制

引用本文

导出引用
刘锦超, 李军伟, 陈斌, 赵雷雷, 李凯. 乘用车电控空气悬架高度控制策略[J]. 液压与气动, 2024, 48(2): 108-115 https://doi.org/10.11832/j.issn.1000-4858.2024.02.014
LIU Jin-chao, LI Jun-wei, CHEN Bin, ZHAO Lei-lei, LI Kai. Height Control Strategy of Electronic Control Air Suspension ofPassenger Car[J]. Chinese Hydraulics & Pneumatics, 2024, 48(2): 108-115 https://doi.org/10.11832/j.issn.1000-4858.2024.02.014

参考文献

[1] 胡启国,杨晨光.考虑路面时变的整车主动悬架的改进模糊PID集成控制策略[J].现代制造工程,2020,(2):20-25.
HU Qiguo, YANG Chenguang. Improved Fuzzy PID Integrated Control Strategy for Vehicle Active Suspension Considering Time-varying Pavement [J]. Modern Manufacturing Engineering, 2020,(2):20-25.
[2] VU V T, TRUONG M H, OLIVIER S. An Investigation into the Ride Comfort of Buses Using an Air Suspension System [J]. International Journal of Heavy Vehicle Systems, 2021,28(2):184-205.
[3] 王文林,侯之超,邹军.汽车空气悬架研究进展:零部件与系统[J].汽车安全与节能,2018,9(1):11-24.
WANG Wenlin, HOU Zhichao, ZOU Jun. Research Progress of Automotive Air Suspension: Parts and Systems [J]. Automotive Safety and Energy Conservation Daily, 2018,9(1):11-24.
[4] JANG I, KIM H, LEE H, et al. Height Control and Failsafe Algorithm for Closed Loop Air Suspension Control System[C]// 2007 International Conference on Control, Automation and Systems. IEEE, 2007:373-378.
[5] MA X B, WONG P K, ZHAO J, et al. Design and Testing of a Nonlinear Model Predictive Controller for Ride Height Control of Automotive Semi-active Air Suspension System [J]. IEEE Access, 2018,6:63777-63793.
[6] SUN X Q, YUAN C C, CAI Y F, et al. Model Predictive Control of an Air Suspension System with Damping Mult-mode Switching Damper Based on Hybrid Model [J]. Mechanical Systems and Signal Processing, 2017,94:94-110.
[7] 李子璇,邬明宇,周福强,等.空气弹簧高度振荡自适应模糊PID控制方法研究[J].机床与液压,2022,50(21):115-119.
LI Zixuan, WU Mingyu, ZHOU Fuqiang, et al. Reseach on Adaptive Fuzzy PID Control Method for Air Spring Height Oscillation [J]. Machine Tool & Hydraulics, 2022,50(21):115-119.
[8] 夏倩颖.汽车电控空气悬架优化控制方法研究[D].锦州:辽宁工业大学,2019.
XIA Qianying. Optimal Control Method of Automotive Electronically Controlled Air Suspension [D]. Jinzhou: Liaoning University of Technology, 2019.
[9] 曹先腾.基于H∞的主动空气悬架控制策略仿真与试验研究[D].哈尔滨:东北林业大学,2021.
CAO Xianteng. Simulation and Experimental Research on Control Strategy of Electronically Controlled Air Suspension Based on H∞ Theory [D]. Harbin: Northeast Forestry University, 2021.
[10] 董炳辰,孙建民,姚德臣,等.工程车辆半主动悬架系统的增量式PID控制[J].中国科技论文,2020,15(10):1203-1208.
DONG Bingchen, SUN Jianmin, YAO Dechen, et al. Incremental PID Control of Semi-active Suspension System of Engineering Vehicles [J]. China Sciencepaper, 2020,15(10):1203-1208.
[11] GHONIEM M, AWAD T, MOKHIAMAR O. Control of a New Low-cost Semi-active Vehicle Suspension System Using Artificial Neural Networks [J]. Alexandria Engineering Journal, 2020,59(5):4013-4025.
[12] SHAFIEI B. A Review on PID Control System Simulation of the Active Suspension System of a Quarter Car Model While Hitting Road Bumps [J]. Journal of The Institution of Engineers (India): Series C, 2022,103(4):1001-1011.
[13] 周雅倩,鲁力群,孙法军,等.基于模糊PID控制重型汽车主动空气悬架仿真分析[J].汽车零部件,2021(5):25-28.
ZHOU Yaqian, LU Liqun, SUN Fajun, et al. Simulation Analysis of Active Air Suspension of Heavy Duty Vehicle Based on Fuzzy PID Control [J]. Automobile Parts, 2021(5):25-28.
[14] BASHIR A O, RUI X T, ABBAS L K, et al. Ride Comfort Enhancement of Semi-Active Vehicle Suspension Based on SMC with PID Sliding Surface Parameters Tuning Using PSO [J]. Journal of Control Engineering and Applied Informatics, 2019,21(3):51-62.
[15] ARM J, BRADAC Z, FIEDLER P, et al. Characterizing the Simulink-based Code Generation Toolchain for Safety-critical Applications in an ARM Cortex-R Target [J]. IFAC-PapersOnLine, 2019,52(27):271-276.
[16] 寇发荣,魏冬冬,梁津,等.基于行驶工况的滚珠丝杠主动悬架多模式切换[J].中国科技论文,2018,13(10):1127-1133.
KOU Farong, WEI Dongdong, LIANG Jin, et al. Multi-mode Switch of Ball Screw Active Suspension Based on Driving Conditions [J]. China Sciencepaper, 2018,13(10):1127-1133.
[17] 吴全君,尉庆国,王婷,等.基于独立调节高度和刚度的空气悬架优化和分析[J].机床与液压,2019,47(3):94-100.
WU Quanjun, WEI Qingguo, WANG Ting, et al. Air Suspension Optimization and Analysis Based on Independent Adjustment of Height and Stiffness [J]. Machine Tool & Hydraulic, 2019,47(3):94-100.
PDF(2901 KB)

204

Accesses

0

Citation

Detail

段落导航
相关文章

/