齿轮泵动态压力模拟器的设计应用

龚笋根, 张留芳, 王英喜, 许宜柱, 何兰平

液压与气动 ›› 2023, Vol. 47 ›› Issue (11) : 176-182.

PDF(6735 KB)
PDF(6735 KB)
液压与气动 ›› 2023, Vol. 47 ›› Issue (11) : 176-182. DOI: 10.11832/j.issn.1000-4858.2023.11.023
综合应用

齿轮泵动态压力模拟器的设计应用

  • 龚笋根1, 张留芳2, 王英喜1, 许宜柱1, 何兰平1
作者信息 +

Design and Application of Dynamic Pressure Simulator for Gear Pump

  • GONG Sun-gen1, ZHANG Liu-fang2, WANG Ying-xi1, XU Yi-zhu1, HE Lan-ping1
Author information +
文章历史 +

摘要

现有的压力模拟器是计算机控制伺服阀加减压实现压力模拟,但由于液体压缩率小,系统泄漏以及空气溶解导致降压较快,压力难以持续稳定,同时微小的体积变化引起较大的压力波动,高精度的压力自动控制较为困难。针对快捷高精度压力自动模拟的需要,研制了一种齿轮泵动态压力模拟器,介绍了其组成、工作原理、关键设计和具体设计应用,计算机PID闭环控制变频电机驱动齿轮泵动态加压,研制两级稳压腔、节流孔、回油孔组合的节流稳压器实现消波稳压,解决齿轮泵产生的压力脉动,经过试制和测试,压力波动小,稳压精度高,加减压平顺快捷,验证了高精度动态稳压技术和模拟器的性能。

Abstract

Traditional pressure simulator use computer-controlled servo valve to achieve automatic pressure calibration, but because of the small liquid compression rate, system leakage and air dissolution resulting in rapid pressure reduction, at the same time, the small volume change causes the big pressure fluctuation, so it is difficult to control the pressure automatically with high precision. A gear pump dynamic pressure simulator is developed to meet the need of quick and high precision pressure automatic simulator. Throttling regulator is developed to eliminate pressure pulsation caused by gear pump. after trial-manufacture and test, the pressure fluctuation is small, the precision of pressure stabilization is high, and the adding and reducing pressure is smooth and fast, the high precision dynamic voltage stabilization technology and the performance of the pressure simulator are verified.

关键词

液压 / 压力模拟器 / 节流稳压器 / 动态加压

引用本文

导出引用
龚笋根, 张留芳, 王英喜, 许宜柱, 何兰平. 齿轮泵动态压力模拟器的设计应用[J]. 液压与气动, 2023, 47(11): 176-182 https://doi.org/10.11832/j.issn.1000-4858.2023.11.023
GONG Sun-gen, ZHANG Liu-fang, WANG Ying-xi, XU Yi-zhu, HE Lan-ping. Design and Application of Dynamic Pressure Simulator for Gear Pump[J]. Chinese Hydraulics & Pneumatics, 2023, 47(11): 176-182 https://doi.org/10.11832/j.issn.1000-4858.2023.11.023

参考文献

[1] 张燕芳,王天琦,董鹏敏,等.全自动压力校验仪的设计[J].中国高新技术企业,2012,(20):30-31.
ZHANG Yanfang, WANG Tianqi, DONG Pengmin, et al. Design of Automatic Pressure Calibrator [J]. China's High-tech Enterprises, 2012(20):30-31.
[2] 李玉龙,钟飞,孙付春.齿轮泵基于困油力的高困油性能优化设计[J].液压与气动,2018,(12):75-78.
LI Yulong, ZHONG Fei, SUN Fuchun. Optimization Design Based on Trapped-oil Force for High Trapped-oil Perfor-mance of External Gear Pumps [J]. Chinese Hydraulics & Pneumatics, 2018,(12):75-78.
[3] 杨国来,王文宇,黄付田,等.不同吸油口尺寸及转速下齿轮泵空化特性[J].液压与气动,2020,(1):74-79.
YANG Guolai, WANG Wenyu, HUANG Futian, et al. Cavitation Characteristics of Gear Pump Under Different Suction Port Sizes and Speeds [J]. Chinese Hydraulics & Pneumatics, 2020,(1):74-79.
[4] 周俊杰,苑士华,荆崇波.考虑空化效应的齿轮泵流量特性研究[J].兵工学报,2020,41(1):189-195.
ZHOU Junjie, YUAN Shihua, JING Chongbo. Research on Flow Characteristics of Gear Pump Considering Cavitation Effect [J]. Acta Armamentarii, 2020,41(1):189-195.
[5] 李劼人,董立,王开宇,等.汽车起重机齿轮泵噪声研究[J].汽车实用技术,2020,(10):145-149.
LI Jieren, DONG Li, WANG Kaiyu, et al. Study on the Noise of Gear Pump of Truck Crane [J]. Automobile Applied Technology, 2020,(10):145-149.
[6] 王建,崔祥波,常雪峰.基于流量脉动系数的齿轮泵齿廓的主动设计及特性分析[J].液压与气动,2019,(9):29-35.
WANG Jian, CUI Xiangbo, CHANG Xuefeng. Active Design and Characteristics Analysis of Tooth Profiles in Gear Pump Based on Flow Pulsation [J]. Chinese Hydraulics & Pneumatics, 2019,(9):29-35.
[7] 黄龙龙,王艳华,刘勇,等.内摆线齿轮泵齿廓在流场中的几何特性分析[J].机床与液压,2020,48(7):143-148,165.
HUANG Longlong, WANG Yanhua, LIU Yong, et al. Analysis of Geometrical Characteristics of Tooth Profile of Hypocycloid Gear Pump in Flow Field [J]. Machine Tool & Hydraulics, 2020,48(7):143-148,165.
[8] 沈良翼,瞿磊,申彪.外啮合齿轮式机油泵流量脉动特性及影响因素分析[J].机械传动,2020,44(1):132-136.
SHEN Liangyi, QU Lei, SHEN Biao. Flow Pulsation Characteristic of External Gear Pump and Analysis of Influencing Factor [J]. Journal of Mechanical Transmission, 2020,44(1):132-136.
[9] 冀宏.液压气压传动与控制[M].武汉:华中科技大学出版社,2014.
JI Hong. Hydraulic Pneumatic Transmission and Control [M]. Wuhan: Huazhong University of Science & Technology Press, 2014.
[10] 姚春芳.齿轮泵研究的现状与发展简论[J].中国石油和化工标准与质量,2017,37(21):120,122.
YAO Chunfang. Brief Discussion on the Status and Development of Gear Pump Research [J]. China Petroleum and Chemical Standard and Quality, 2017,37(21):120,122.
[11] 宫风顺.数字式压力校验仪及其应用[J].工业计量,2003,(S1):224-225.
GONG Fengshun. Digital Pressure Calibrator and Its Application [J]. Industrial Measuremengt, 2003,(S1):224-225.
[12] 丁建龙,鞠海红,李东梁.深度模拟器的试验研究[J].舰船电子工程,34,3,2014(3):165-166.
DING Jianlong, JU Haihong, LI Dongliang. Experimental Study on Depth Simulator [J]. Ship Electronic Engineering, VoI.34,No.3,2014(3):165-166.
[13] 傅晓云,李璇,许超斌,等.水下滑翔机深度模拟装置仿真及实验研究[J].液压与气动,2015,(7):99-100.
FU Xiaoyun, LI Xuan, XU Chaobin, et al. Simulation and Experimental Study on Depth Simulator of Sea Glider [J]. Hydraulic and Pneumatic, 2015,(7):99-100.
[14] 王淮阳,胡珊珊,刘正士,等.双活塞式高精度深海压力模拟方法[J].计量学报,2021,(2):199-200.
WANG Huaiyang, HU Shanshan, LIU Zhengshi, et al. Double-piston High-precision Deep-sea Pressure Simulation Methed [J]. Acta Metrologica Sinica, 2021,(2):199-200.
[15] 李维嘉,李绍安,罗兴桂.高精度压力筒试验系统[J].中国造船,2008,(3):72-73.
LI Weijia, LI Shaoan, LUO Xinggui. High-precision Pressure Cylinder Test System [J]. China Shipbuilding, 2008,(3):72-73.
[16] 王英喜,龚笋根,许宜柱,等.组合式压力控制方法的研究与应用[J].机械研究与应用,2022,(5):83-84.
WANG Yingxi, GONG Sungen, XU Yizhu, et al. Research and Application of Combined Pressure Control Method [J]. Machanical Research & Application, 2022,(5):83-84.
[17] 王积伟.液压传动[M].北京:机械工业出版社,2018.
WANG Jiwei. Hydraulic and Transmission [M]. Beijing: Machinery Industry Press, 2018.
PDF(6735 KB)

25

Accesses

0

Citation

Detail

段落导航
相关文章

/