漠大线输油保温管道外护层开裂的热力耦合仿真与试验研究

邢海燕, 王朝东, 李雪峰, 郜玉新, 陈思雨, 张振龙

压力容器 ›› 2018, Vol. 35 ›› Issue (5) : 13-21.

PDF(3559 KB)
PDF(3559 KB)
压力容器 ›› 2018, Vol. 35 ›› Issue (5) : 13-21. DOI: 10.3969/j.issn.1001-4837.2018.05.003
实验研究

漠大线输油保温管道外护层开裂的热力耦合仿真与试验研究

  • 邢海燕1, 王朝东1, 李雪峰2, 郜玉新3, 陈思雨1, 张振龙1
作者信息 +

Thermal Coupling Simulation and Experimental Research on the Outer Protective Layer Cracking of the Oil Transmission Insulated Piping in the Mohe-Daqing Line

  • XING Hai-yan1, WANG Zhao-dong1, LI Xue-feng2, GAO Yu-xin3, CHEN Si-yu1, ZHANG Zhen-long1
Author information +
文章历史 +

摘要

针对中俄漠大线输油保温管道多层结构开裂问题,结合ANSYS热力耦合动态仿真和低温材料性能试验研究寒地动态大温差下开裂原因。通过对保温直、弯管道多层结构进行有限元建模,确定堆放条件下的边界条件与动态温度载荷,得到聚乙烯外护层的应力场及应变场。仿真分析得出,保温管道多层结构因各层材料线膨胀系数差异而产生复杂的力学约束作用,造成各层之间存在着应力及应变差异,这种差异在昼夜大温差的往复动态影响下,使多层结构的聚乙烯外护层产生严重的热疲劳效应。在此基础上结合低温材料性能试验,进一步对交变温度影响下多层结构直管与弯管开裂与裂纹扩展进行了研究。结果表明,在大温差下,应力及应变值均已超越聚乙烯外护层拉伸断裂极限强度,有限元仿真结果与试验结果相吻合,为保温管道材料的改进提供一种新的科学依据。

Abstract

With respect to the cracking problem of multilayer structure of oil transmission insulated piping in the Mohe-Daqing line between China and Russia,the cause of cracking under big dynamic temperature difference in cold area was researched in combination with thermal coupling dynamic simulation by ANSYS software and performance test of the low temperature material. Through the finite element modeling of multi-layer structure of insulated straight pipe and elbow pipe,the boundary condition and dynamic temperature load under stacking condition were determined,and then the stress field and strain field of polyethylene outer protective layer were obtained. The simulation analysis shows that the multilayer structure of the in-sulated pipe produces complex mechanical constraint effect due to the difference of linear expansion coef-ficient of the materials in different layers,resulting in presence of difference in stress and strain between the layers. Under the reciprocating dynamic influence of big temperature difference between day and night,this difference causes serious thermal fatigue effect of the polythene outer protective layer of the multilayer structure. On this basis and in combination with the performance test of low temperature materi-als,further researches were conducted on cracking and crack propagation of straight pipe and elbow pipe of multi structure under the effect of alternating temperature. The results show that both the values of stress and strain have exceeded the tensile fracture ultimate strength of polyethylene outer protective lay-er. The results of finite element simulation are consistent with the test results,which provides a new scien-tific basis for the improvement of insulated piping materials.

关键词

保温管道 / 寒地动态大温差 / 热力耦合仿真 / 应力及应变 / 外护层开裂

Key words

insulated pipe / dynamic big temperature difference in cold area / thermal coupling simulation / stress and strain / cracking of outer protective layer

引用本文

导出引用
邢海燕, 王朝东, 李雪峰, 郜玉新, 陈思雨, 张振龙. 漠大线输油保温管道外护层开裂的热力耦合仿真与试验研究[J]. 压力容器, 2018, 35(5): 13-21 https://doi.org/10.3969/j.issn.1001-4837.2018.05.003
XING Hai-yan, WANG Zhao-dong, LI Xue-feng, GAO Yu-xin, CHEN Si-yu, ZHANG Zhen-long. Thermal Coupling Simulation and Experimental Research on the Outer Protective Layer Cracking of the Oil Transmission Insulated Piping in the Mohe-Daqing Line[J]. Pressure Vessel Technology, 2018, 35(5): 13-21 https://doi.org/10.3969/j.issn.1001-4837.2018.05.003

参考文献

[1] 李茂华,石磊彬,钟威,等. 内外压热应力影响下西气东输二线长输管道变形的有限元分析[J]. 天然气工业,2017,33(8):119-123.
[2] Zhang J,Liang Z,Han C J. Failure analysis and finite element simulation of above ground oil-gas pipeline im-pacted by rockfall[J]. Journal of Failure Analysis and Prevention,2014,14(4):530-536.
[3] 王旭飞,刘菊蓉. 保温热力管有限元热固耦合分析[J]. 陕西理工大学学报,2011,27(2):4-10.
[4] Liu Jian-Jun,Xie Jun. Numerical simulation of ther-mo-hydro-mechanical coupling around underground pipelines in patchy permafrost region[J]. Yantu Lix-ue/Rock and Soil Mechanics,2013,34:444-450.
[5] 金仁虎. 热力耦合作用下直埋热力管道破裂的有限元分析[J]. 科技与创新,2017(18):120.
[6] Vaz M,Lange M R. Thermo-mechanical coupling strat-egies in elastic-plastic problems[J]. Continuum Mechanics and Thermodynamics, 2017, 29(2):373-383.
[7] 张安磊. 多种耦合作用下热力管道破坏的有限元分析[D]. 唐山:河北联合大学,2012.
[8] 郑平. 冻土区埋地管道周围土壤水热力耦合作用的数值模拟[D]. 东营:中国石油大学(华东),2011.
[9] 庞丽萍,王浚. 热介质直埋管道周围温度场仿真研究[J]. 系统仿真学报,2004(3):485-487.
[10] 李廷辉. 季节性冻土区埋地管道安全性分析[D]. 大庆:东北石油大学,2017.
[11] 李晓丽,李廷辉,李满利,等. 非均匀冻胀对埋地管道结构安全性的影响[J]. 压力容器,2016,33(9):64-70.
[12] 徐君臣,吴云龙,张文杰. 高温管线限位支撑结构的热力耦合分析及结构改进[J]. 压力容器,2017, 34(12):32-38.

基金

国家自然科学基金资助项目(11272084,11072056);中国石油和化学工业联合会科技指导计划项目(2017-01-05);中国石油科技创新基金资助项目(2015D-5006-0602);东北石油大学研究生创新科研项目(YJSCX2016-024NEPU)
PDF(3559 KB)

548

Accesses

0

Citation

Detail

段落导航
相关文章

/