Effects of Mechanical Stirring on Flow Field in Electromagnetic Cold Crucible Melting and Solidifying Glass

Qie Dongsheng, Li Baojun, Wang Shu, Zhang Hua, Chen Ruirun

Special Casting & Nonferrous Alloys ›› 2020, Vol. 40 ›› Issue (5) : 465-469.

PDF(1237 KB)
PDF(1237 KB)
Special Casting & Nonferrous Alloys ›› 2020, Vol. 40 ›› Issue (5) : 465-469. DOI: 10.15980/j.tzzz.2020.05.001

Effects of Mechanical Stirring on Flow Field in Electromagnetic Cold Crucible Melting and Solidifying Glass

  • Qie Dongsheng1, Li Baojun1, Wang Shu2, Zhang Hua1, Chen Ruirun2,3
Author information +
History +

Abstract

A 3-D model of mechanical agitator was established and the flow fields were investigated under different anchor agitators, melting temperatures, agitator rotational speeds and the position of the agitator by using Fluent in ANSYS software combining with MRF model. The results present that through changing the anchor agitator shapes, little effect on flow field in the mixing process can be observed. With the increase of the melting temperature, the range of the melting flow is enlarged and the optimized temperature to setting the anchor agitator is more than 1 100℃. The maximum flow velocity of melting with 100 r/min agitator rotational speed is 1.47 m/s, which is twice as that of 50 r/min. When the distance between the agitator and the bottom of crucible is a quarter of the height, the range of the melting stirred is large, however, when the distance of that is one-eighth of the height, the melting under the agitator is stirred adequately. Mechanical stirring can improve effectively the melt flow rate and flow range.

Key words

Glass Solidification / Electromagnetic Cold Crucible / Mechanical Stirring / Flow Field

Cite this article

Download Citations
Qie Dongsheng, Li Baojun, Wang Shu, Zhang Hua, Chen Ruirun. Effects of Mechanical Stirring on Flow Field in Electromagnetic Cold Crucible Melting and Solidifying Glass[J]. Special Casting & Nonferrous Alloys, 2020, 40(5): 465-469 https://doi.org/10.15980/j.tzzz.2020.05.001

References

[1] 彭疆南,彭福银.核能综合利用发展趋势[J].中国科技信息, 2019(2):107-108.
[2] 徐凯.核废料玻璃固化国际研究进展[J].中国材料进展, 2016, 35(7):481-488.
[3] 杨晓东,孙涛.浅谈核电站放射性废物的治理[J].中小企业管理与科技, 2019(1):11-12.
[4] 陈明周,张瑞峰,吕永红,等.放射性固体废物玻璃固化技术综述[J].热力发电, 2012, 41(3):1-6.
[5] 陈树明,董海龙.世界玻璃固化技术的发展与应用趋势[A].中国核学会核化工分会.中国核学会核化工分会放射性三废处理、处置专业委员会学术交流会论文集[C].中国核学会核化工分会, 2011.
[6] 刘存银,李玮,曹德伟,等.玻璃固化用电磁冷坩埚电磁场研究[J].特种铸造及有色合金, 2016, 36(6):565-569.
[7] 朱冬冬,刘丽君,郄东生,等.冷坩埚玻璃固化熔炉启动工艺研究[J].原子能科学技术, 2018, 52(12):2222-2225.
[8] SUGILAL G. Experimental analysis of the performance of cold crucible induction glass melter[J]. Applied Thermal Engineering, 2008, 28(14):1952-1961.
[9] 中国原子能科学研究院,我国初步掌握冷坩埚玻璃固化技术[R].中国原子能科学研究院年报,2017.
[10] 明玉周,李铮,曹德伟,等.玻璃固化用电磁冷坩埚温度场研究[J].特种铸造及有色合金, 2017, 37(11):1196-1200.
[11] CHEN R R, YANG Y H, FANG H Z, et al. Glass melting inside electromagnetic cold crucible using induction skull melting technology[J]. Applied Thermal Engineering, 2017, 121:146-152.
[12] SAUVAGE E, BRUN P, BONNETIER A, et al. 3-D thermal,hydrodynamic &magnetic modeling of elaboration of glass by induction incold crucible[A]. in:Proceedings of the Waste Management 2010 Symposium[C]. Phoenix, 2009.
[13] 刘丽君,张生栋,郄东生,等.冷坩埚玻璃固化实验装置研制及搅拌等关键技术研究进展[R].中国原子能科学研究院年报, 2016.
[14] 赵鹏.连铸垂直段结晶器-弯曲二冷段内漩涡运动的大涡模拟[J].特种铸造及有色合金, 2019, 39(8):813-817.
[15] 任廷志,张志达,金昕,等.双带式非晶带材连铸熔池热流耦合数值模拟[J].特种铸造及有色合金, 2018, 38(1):59-62.
[16] 曹德伟. 玻璃固化用电磁冷坩埚优化设计及温度场和流场研究[D].哈尔滨:哈尔滨工业大学, 2014.
[17] 陈帅彰,孙斌煜,崔鹏鹏,等.基于ANSYS 12/Fluent模拟的双体坩埚的结构设计[J].特种铸造及有色合金, 2015, 35(6):590-592.
[18] 李炎,卢献忠,钟毅,等.基于Fluent的偏心贯流式风口温度场和流场的仿真[J].特种铸造及有色合金, 2015, 35(5):471-473.
[19] 吴凯,殷亚军,周建新,等.基于同位网格技术的熔炼过程机械搅拌模拟[J].特种铸造及有色合金, 2016, 36(8):807-810.
[20] 王启龙. 机械搅拌制备SiCp/2014复合材料及搅拌过程中流场的数值模拟[D].长春:吉林大学, 2014.
[21] 于勇. FLUENT入门与进阶教程[M]. 北京:北京理工大学出版社, 2008.
[22] 吴树森. 材料加工冶金传输原理[M]. 北京:机械工业出版社, 2001.
PDF(1237 KB)

188

Accesses

0

Citation

Detail

Sections
Recommended

/