电流辅助成形技术研究进展及展望

徐勋虎, 康庆鑫, 刘永康, 王春旭, 王国峰

塑性工程学报 ›› 2023, Vol. 30 ›› Issue (6) : 58-66.

PDF(1470 KB)
PDF(1470 KB)
塑性工程学报 ›› 2023, Vol. 30 ›› Issue (6) : 58-66. DOI: 10.3969/j.issn.1007-2012.2023.06.005
特种能场辅助成形

电流辅助成形技术研究进展及展望

  • 徐勋虎1,2, 康庆鑫1,2, 刘永康3, 王春旭1,2, 王国峰1,2
作者信息 +

Research progress and prospect of current-assisted forming technology

  • XU Xun-hu1,2, KANG Qing-xin1,2, LIU Yong-kang3, WANG Chun-xu1,2, WANG Guo-feng1,2
Author information +
文章历史 +

摘要

超塑成形/扩散连接(SPF/DB)工艺是指在一个热循环内材料同时完成成形和扩散连接的加工过程。随着航空航天领域对轻质高强难变形金属材料需求增加,迫切需要探索这类材料的成形新方法。电流辅助成形能够降低材料流动应力,提高其成形精度,与SPF/DB工艺相结合能够高效制备复杂结构件,这对高强难变形金属材料成形具有重要意义。介绍了电致塑性原理,梳理了电流辅助成形、扩散连接和SPF/DB的特点与优势,阐述了目前电流辅助成形工艺面临的挑战与展望。

Abstract

Superplastic forming/diffusion bonding (SPF/DB)technology is the process of accomplishing forming and diffusion bonding simultaneously in one thermal cycle of material. With the increasing demand for lightweight and difficult-to-deformation metal materials with high strength in aerospace field,it is urgent to explore new methods for forming these materials. Current-assisted forming can reduce the flow stress of material and improve its forming accuracy. The combination of current-assisted forming and SPF/DB process can efficiently prepare complex structural parts,which is of great significance forming difficult-to-deformation metal materials with high strength. The principle of electroplasticity was introduced,the characteristics and advantages of current-assisted forming,diffusion bonding and SPF/DB were summarized,and the challenges and prospects of current-assisted forming technology were expounded.

关键词

超塑成形/扩散连接技术 / 电流辅助成形技术 / 电致塑性 / 塑性成形 / 难变形材料

Key words

superplastic forming/diffusion bonding technology / current-assisted forming technology / electroplasticity / plastic forming / difficult-to-deformation material

引用本文

导出引用
徐勋虎, 康庆鑫, 刘永康, 王春旭, 王国峰. 电流辅助成形技术研究进展及展望[J]. 塑性工程学报, 2023, 30(6): 58-66 https://doi.org/10.3969/j.issn.1007-2012.2023.06.005
XU Xun-hu, KANG Qing-xin, LIU Yong-kang, WANG Chun-xu, WANG Guo-feng. Research progress and prospect of current-assisted forming technology[J]. Journal of Plasticity Engineering, 2023, 30(6): 58-66 https://doi.org/10.3969/j.issn.1007-2012.2023.06.005

参考文献

[1] 任广义,王晓康,王高明,等. 大型复杂型面钛合金超塑成形/扩散连接模气密性研究[J].模具工业,2022,48(11):22-26. REN Guangyi,WANG Xiaokang,WANG Gaoming,et al. Study on air tightness of superplastic forming/diffusion bonding die for titanium alloys with large complex profiles[J].Die & Mould Industry,2022,48(11):22-26.
[2] DU Z,WANG C,LIU Q,et al. The superplastic forming/diffusion bonding of TA7 titanium alloy for manufacturing hollow structure with stiffeners[J].Journal of Manufacturing Processes,2022,73:385-394.
[3] WANG X,ZHAO Y,HOU H,et al. Effect of hydrogen content on superplastic forming/diffusion bonding of TC21 alloys[J].Journal of alloys and compounds,2010,503(1):151-154.
[4] DU Z,ZHANG K. The superplastic forming/diffusion bonding and mechanical property of TA15 alloy for four-layer hollow structure with squad grid[J].International Journal of Material Forming,2021,14(5):1057-1066.
[5] 王宝仁,纪文海. TC4钛合金超塑成形/扩散连接组合工艺应用研究[J].航空学报,1989,10(6):309-314. WANG Baoren,JI Wenhai. Application investigation on superplastic forming/diffusion bonding combined technology of titanium alloy TC4[J].Acta Aeronautica et Astronautica Sinica,1989,10(6):309-314.
[6] WANG C,ZHAO T,WANG G,et al. Superplastic forming and diffusion bonding of Ti-22Al-24Nb alloy[J].Journal of Materials Processing Technology,2015,222:122-127.
[7] 武永,周贤军,吴迪鹏,等. TC31钛合金四层舵翼超塑成形/扩散连接工艺研究[J].航空制造技术,2021,64(17):34-40. WU Yong,ZHOU Xianjun,WU Dipeng,et al. Superplastic forming and diffusion bonding process for four-sheet air rudder of TC31 titanium alloy[J].Aeronautical Manufacturing Technology,2021,64(17):34-40.
[8] HAN W,ZHANG K,WANG G. Superplastic forming and diffusion bonding for honeycomb structure of Ti-6Al-4V alloy[J].Journal of Materials Processing Technology,2007,183(2-3):450-454.
[9] ZHU Z C,DHOKIA V G,NASSEHI A,et al. A review of hybrid manufacturing processes-state of the art and future perspectives[J].International Journal of Computer Integrated Manufacturing,2013,26(7):596-615.
[10] 杜浩,汤泽军,章锦涛,等. 6063T4铝合金脉冲电流辅助拉伸力学性能实验研究[J].材料科学与工艺,2018,26(1):54-61. DU Hao,TANG Zejun,ZHANG Jintao,et al. Experimental study on the mechanical properties of 6063T4 aluminum alloy under electropulsing-assisted tensile[J].Materials Science and Technology,2018,26(1):54-61.
[11] SIM M S,LEE C M. A study on the laser preheating effect of Inconel 718 specimen with rotated angle with respect to 2-axis[J].International Journal of Precision Engineering and Manufacturing,2014,15(1):189-192.
[12] 姜颢天,靳刚,秦娜,等. 基于电塑性效应的钨合金铣削试验研究[J].塑性工程学报,2022,29(8):123-130. JIANG Haotian,JIN Gang,QIN Na,et al. Test study on tungsten alloy milling based on electroplasticity effect[J].Journal of Plasticity Engineering,2022,29(8):123-130.
[13] PARK C,SHIN B S,KANG M S,et al. Experimental study on micro-porous patterning using UV pulse laser hybrid process with chemical foaming agent[J].International Journal of Precision Engineering and Manufacturing,2015,16(7):1385-1390.
[14] LEE S J,KIM J D,SUH J. Microstructural variations and machining characteristics of silicon nitride ceramics from increasing the temperature in laser assisted machining[J].International Journal of Precision Engineering and Manufacturing,2014,15(7):1269-1274.
[15] CHO Y T,NA S J. Numerical analysis of plasma in CO2 laser and arc hybrid welding[J].International Journal of Precision Engineering and Manufacturing,2015,16(4):787-795.
[16] LI X,WANG G F,ZHANG J X,et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet[J].The International Journal of Advanced Manufacturing Technology,2020,106(1):77-89.
[17] 孙超. TC4钛合金中空叶片扩散连接-超塑成形技术[D]. 哈尔滨:哈尔滨工业大学,2014. SUN Chao,DB-SPF processing of hollow blade for TC4 titanium alloy[D]. Harbin:Harbin Institute of Technology,2014.
[18] TROITSKII O A,LIKHTMAN V I. The anisotropy of the action of electron and γ radiation on the deformation of zinc single crystals in the brittle state[J].Soviet Physics Doklady,1963,(8):332-334.
[19] KRAVCHENKO V F. Effect of directed electron beam on moving dislocations[J].Soviet Journal of Experimental and Theoretical Physics,1967,(24):1135-1142.
[20] TROITSKII O A. The effect of additional plastificationtion of irradiated mental with current pickup[J].Strength of Materials,1975,7(1):36-39.
[21] TROITSKII O A,STASHENKO V I,SOKOLOV N V,et al. Electroplastic drawing of stainless steels[J].Doklady Akademii Nauk SSSR,1977,237(5):1082-1085.
[22] YE X X,WANG L S,TANG G Y,et al. Effects of high-energy electro-pulsing treatment on microstructure,mechanical properties and corrosion behavior of Ti-6Al-4V alloy[J].Mater.Sci. Eng. C Mater. Biol. Appl.,2015,49:851-860.
[23] SALANDRO W A,BUNGET C J,MEARS L A. Thermal-based approach for determining electroplastic characteristics[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2012,226:775-788
[24] SONG P C,LI X F,DING W,et al. Electroplastic tensile behavior of 5A90 Al-Li alloys[J].Acta Metallurgica Sinica (English Letters),2014,27:642-648.
[25] XU X H,KANG Q X,LIU Y K,et al. Effects of electropulsing treatment on the microstructural evolution of hot-rolled TiBw/TA15 composite billet with a network architecture[J].Materials Characterization,2022,194:112341.
[26] WANG G F,LI X,GU Y B,et al. The temperature distribution and the effect of low-density electric current on the B2+O lamellar microstructure of Ti2AlNb alloy sheet during resistance heating[J].Journal of Central South University,2019,26(3):550-559
[27] LIU J Y,ZHANG K F. Resistance heating superplastic forming and influence of current on deformation mechanism of TA15 titanium alloy[J].International Journal of Advanced Manufacturing Technology,2015,76:1673-1680.
[28] SPITSIN V I,TROITSKII O A.Electroplastic deformation of metals[M]. Moscow:Nauka,1985.
[29] OKAZAKI K,KAGAWA M,CONRAD H. A study of the electroplastic effect in metals[J].Scripta Metallurgica,1978,12(11):1063-1068.
[30] OKAZAKI K,KAGAWA M,CONRAD H. Additional results on the electroplastic effect in metals[J].Scripta metallurgica,1979,13(4):277-280.
[31] KLIMOV K M,SHNYREV G D,NOVIKOV I I. On electroplasticity of metals[J].Doklady Akademii Nauk USSR,1974,19(11):787-788.
[32] CONRAD H. Thermally activated plastic flow of metals and ceramics with an electric field or current[J].Materials Science and Engineering A,2002,322(1):100-107.
[33] CONRAD H. Electroplasticity in metals and ceramics[J].Materials Science and Engineering:A,2000,287(2):276-287.
[34] KRAVCHENKO V Y. Effect of directed electron beam on moving dislocations[J].Soviet Journal of Experimental and Theoretical Physics,1967,(24):1135-1142.
[35] MECKLENBURG M,ZUTTER B T,LING X Y,et al. Visualizing the electron wind Force in the elastic regime[J].Nano Letters,2021,21(24):10172-10177.
[36] 刘生发,谭颖臻,宋天杰,等. Cu/Sn-58Bi/Cu焊点电迁移行为研究[J].特种铸造及有色合金,2020,40(1):7-11. LIU Shengfa,TAN Yingzhen,SONG Tianjie,et al. Electromigration behavior of Cu/Sn-58Bi/Cu solder joints[J].Special Casting & Nonferrous Alloys,2020,40(1):7-11.
[37] LI X,ZHU Q,HONG Y,et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force[J].Nature Communications,2022,13(1):1-9.
[38] ZHU R F,JIANG Y B,GUAN L,et al. Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy[J].Journal of Alloys and Compounds,2016,658:548-554.
[39] JIANG Y B,TANG G Y,XIE J X,et al. Mechanism of electropulsing induced recrystallization in a cold-rolled Mg-9Al-1Zn alloy[J].Journal of Alloys and Compounds,2012,536:94-105.
[40] JIANG Y B,TANG G Y,LIU W,et al. Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment[J].Journal of Alloys and Compounds,2011,509:4308-4313.
[41] CONRAD H. Effects of electric current on solid state phase transformations in metals[J].Materials Science and Engineering A,2000,287(2):227-237.
[42] PARK J W,JEONG H J,JIN S W,et al. Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy[J].Materials Characterization,2017,133:70-76.
[43] 刘超,孙祥云,周金盛,等. 脉冲电流作用下 GH4169 合金拉伸塑性及再结晶行为[J].塑性工程学报,2022,28(8):169-174. LIU Chao,SUN Xiangyun,ZHOU Jinsheng,et al. Tensile plasticity and recrystallization behavior of GH4169 alloy under action of pulse current[J].Journal of Plasticity Engineering,2022,28(8):169-174.
[44] LIU Y,FAN J F,ZHANG H,et al. Recrystallization and microstructure evolution of the rolled Mg-3Al-1Zn alloy strips under electropulsing treatment[J].Journal of Alloys and Compounds,2015,622:229-235.
[45] LI C,JIANG S,ZHANG K. Pulse current-assisted hot-forming of light metal alloy[J].The International Journal of Advanced Manufacturing Technology,2012,63(9):931-938.
[46] 郑秋,清水澈英,古岛刚,等. 电加热辅助微弯曲成形中纯钛箔材变形行为的晶粒尺寸效应[J].塑性工程学报,2022,29(2):90-94. ZHENG Qiu,SHIMIZU Tetsuhide,FURUSHIMA Tsuyoshi,et al. Grain size effect on deformation behavior of pure titanium foils in resistance heating assisted microbending forming[J]. Journal of Plasticity Engineering,2022,29(2):90-94.
[47] LIU J,ZHANG K. Resistance heating superplastic forming and influence of current on deformation mechanism of TA15 titanium alloy[J].The International Journal of Advanced Manufacturing Technology,2015,76(9):1673-1680.
[48] ZHAO Z,WANG G,HOU H,et al. The effect of pulsed current on the shear deformation behavior of Ti-6Al-4V alloy[J].Scientific reports,2018,8(1):1-9.
[49] 张昕,李智军,李宏伟,等. 镍基高温合金初始织构对电辅助拉伸宏微观行为的影响[J].精密成形工程,2019,11(5):32-36. ZHANG Xin,LI Zhijun,LI Hongwei,et al. Effects of initial texture on macro-micro behaviors of Ni-based superalloy during the electrically-assisted tensile[J].Journal of Netshape Forming Engineering,2019,11(5):32-36.
[50] 郑兴鹏,唐国翌,宋国林,等. 304不锈钢带材电致塑性轧制[J].钢铁,2014,49(11):92-96. ZHENG Xingpeng,TANG Guoyi,SONG Guolin,et al. Electroplastic rolling of 304 stainless steel strip[J].Iron and Steel,2014,49(11):92-96.
[51] SALANDRO W A,BUNGET C J,MEARS L. Several factors affecting the electroplastic effect during an electrically-assisted forming process[J].Journal of Manufacturing Science and Engineering,2011,133(6):064503.
[52] MORI K,MAENO T,YAMADA H,et al. 1-Shot hot stamping of ultra-high strength steel parts consisting of resistance heating,forming,shearing and die quenching[J].International Journal of Machine Tools and Manufacture,2015,89:124-131.
[53] MAENO T,MORI K,OGIHARA T,et al. Blanking immediately after heating and ultrasonic cleaning for compact hot-stamping systems using rapid resistance heating[J].The International Journal of Advanced Manufacturing Technology,2018,97(9-12):3827-3837.
[54] MAENO T,MORI K,UNOU C. Improvement of die filling by prevention of temperature drop in gas forming of aluminium alloy tube using air filled into sealed tube and resistance heating[J].Procedia Engineering,2014,81:2237-2242.
[55] LIU J,ZHANG K. Influence of electric current on superplastic deformation mechanism of 5083 aluminium alloy[J].Materials Science and Technology,2016,32(6):540-546.
[56] 李骁. Ti2AlNb合金板材电流辅助超塑成形/扩散连接工艺基础研究[D]. 哈尔滨:哈尔滨工业大学,2019. LI Xiao. Investigation on electrically assisted superplastic forming/diffusion bonding of Ti2AlNb alloy sheet[D]. Harbin:Harbin Institute of Technology,2019.
[57] XU Z T,PENG L F,LAI X M. Electrically assisted solid-state pressure welding process of SS316 sheet metals[J].Journal of Materials Processing Technology,2014,214(11):2212-2219.
[58] LI L,LIANG Y Z,CHEN S M,et al. Ultrafast and robust joining of 3YSZ and GH3128 superalloy using Cu interlayer under an electric field[J].Journal of Alloys and Compounds,2022,890:161893.
[59] 石文展. GH5188 合金电流辅助扩散连接/气胀成形性能研究[D]. 哈尔滨:哈尔滨工业大学,2020. SHI Wenzhan. Research on current auxiliary diffusion bonding/gas bulging forming properties of GH5188 alloy[D]. Harbin:Harbin Institute of Technology,2020.
[60] SONG K J,LÜ L,ZHU S,et al. Microstructure and mechanical properties of spark plasma diffusion-bonded 5A06Al joints with Al-20Cu-5Si-2Ni interlayer[J].The International Journal of Advanced Manufacturing Technology,2021,114(11):3627-3643.
[61] 杨辉,卢博,杨贤金,等. 电流辅助加热条件下 Ti3AlC2/Zr 连接界面研究[J].现代技术陶瓷,2017,38(1):48-56. YANG Hui,LU Bo,YANG Xianjin,et al. Interlayer-mediated interface bonding of Zr and Ti3AlC2 through electric-current-aided heating[J].Advanced Ceramics,2017,38(1):48-56.
[62] ZHANG S W,GAO K,CAI L H,et al. Microstructural evolution and fatigue performance of dissimilar solid-state joints of SUS316L and SUS410[J].Journal of Materials Research and Technology,2022,16:555-569.
[63] ZHANG S W,GAO K,HONG S T,et al. Electrically assisted solid state lap joining of dissimilar steel S45C and aluminum 6061-T6 alloy[J].Journal of Materials Research and Technology,2021,12:271-282.
[64] LI Y F,HONG S T,CHOI H,et al. Solid-state dissimilar joining of stainless steel 316L and Inconel 718 alloys by electrically assisted pressure joining[J].Materials Characterization,2019,154:161-168.
[65] 刘永康. 5A90铝锂合金中空构件电流辅助扩散连接-成形一体化技术[D]. 哈尔滨:哈尔滨工业大学,2022. LIU Yongkang. Integrated technology for electropulsing assisted diffusion bonding and forming of 5A90 Al-Li alloy hollow structural parts[D]. Harbin:Harbin Institute of Technology,2022.

基金

国家自然科学基金资助项目(51875122)
PDF(1470 KB)

400

Accesses

0

Citation

Detail

段落导航
相关文章

/