风力机叶片气动增效发展综述

张照煌, 李魏魏, 肖鹏飞

机械设计 ›› 2020, Vol. 37 ›› Issue (11) : 1-11.

PDF(6151 KB)
PDF(6151 KB)
机械设计 ›› 2020, Vol. 37 ›› Issue (11) : 1-11.
专题论文

风力机叶片气动增效发展综述

  • 张照煌, 李魏魏, 肖鹏飞
作者信息 +

Review of the development of aerodynamic efficiency increase of the wind turbine's blades

  • ZHANG Zhao-huang, LI Wei-wei, XIAO Peng-fei
Author information +
文章历史 +

摘要

作为替代化石能源的一种新能源,风能发电因其占地面积小、发电成本低、环境友好等优点得到广泛的关注与 应用。 作为风能转化媒介,风力机叶片的效率决定了风能转化为电能的效率。 文中简述风力机专用翼型、弦长扭角确定 方法及叶片增效装置方面的成果,简述部分增效方法的理论基础及工作原理。

Abstract

As an alternative to fossil energy, wind energy has attracted wide attention and widely application because of its less land occupation, low cost of power generation and low impact on environment. The wind turbine's blades, which convert wind energy into wind turbine kinetic energy, play a decisive role in the rotor's power coefficient. This article briefly introduces some achievements of the research on wind turbines, such as the special airfoil on blade, the method for calculating chord length and torsion angle as well as the synergistic device for blades. Some methods are explored; their theoretical basis and working principles are introduced.

关键词

风力机叶片专用翼型 / Gurney襟翼 / 变形叶片 / 涡流发生器 / 仿生 / 射流

Key words

wind turbine’s blade airfoil / Gurney flap / deformation blade / vortex generator / bionics / jet

引用本文

导出引用
张照煌, 李魏魏, 肖鹏飞. 风力机叶片气动增效发展综述[J]. 机械设计, 2020, 37(11): 1-11
ZHANG Zhao-huang, LI Wei-wei, XIAO Peng-fei. Review of the development of aerodynamic efficiency increase of the wind turbine's blades[J]. Journal of Machine Design, 2020, 37(11): 1-11

参考文献

[1] Tangler J L, Somers D M. NREL airfoil families for HAWTs[J]. NASA Sti/recon Technical Report N, 1995(95):1-12.
[2] Tangler J L, Somers D M. Status of the special-purpose airfoil families[R]. NASA San Francisco:AIAA, 1987.
[3] Timmer W A, van-Rooij R P J O M. Summary of the Delft University wind turbine dedicated airfoils[J]. Journal of Solar Energy Engineering,2003,125(4):11-21.
[4] Fuglsang P, Christian B. Development of the RISø wind turbine airfoils[J]. Wind Energy,2004,7(2):145-162.
[5] Björck A. Coordinates and Calculations for the FFA-W1-xxx, FFA-W2-xxx, FFA-W3-xxx Series of Airfoils for horizontal axis wind turbines[R]. Stockholm:FFA TN, 1990.
[6] 白井艳,杨科,李宏利,等. 水平轴风力机专用翼型族设计[J]. 工程热物理学报, 2010, 31(4):589-592.
[7] 李宏利. 水平轴风力机专用翼型族的设计及其气动性能研究[D]. 北京:中国科学院研究生院, 2009.
[8] 陶梅贞. 图书题名缺失[M]. 西安:西北工业大学出版社, 2001:223-227.
[9] Wang J J, Li Y C., Choi K S. Gurney flap-Lift enhancement, mechanisms and applications[J]. Progress in Aerospace Sciences, 2008, 44(1):22-47.
[10] Troolin D R, Longmire E K, Lai W T. Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap[J]. Experiments in Fluids, 2006, 41(2):241-254.
[11] Meyer R, Hage W, Bechert D W. Drag reduction on gurney flaps by three-dimensional modifications[J]. Journal of Aircraft, 2006, 43(1):132-140.
[12] Li Y C, Wang J J, Zhang P F. Effect of gurney flaps on a NACA0012 airfoil[J]. Flow, Turbulence and Combustion, 2002, 68(1):27-39.
[13] Liebeck R H. Design of subsonic airfoils for high lift[J]. Journal of Aircraft, 1978, 15(9):547-561.
[14] Li Y C, Wang J J, Hua J. Experimental investigations on the effects of divergent trailing edge and Gurney flaps on a supercritical airfoil[J]. Aerospace Science & Technology, 2007, 11(2):91-99.
[15] Barbarino S, Bilgen O, Ajaj R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(1):823-877.
[16] Thill C, Etches J, Bond I, et al. Morphing skins[J]. The Aeronautical Journal, 2008, 112(1129):117-139.
[17] Basaeri H, Yousefi-Koma A, Mohammad-Reza Z, et al. Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires[J]. Mechatronics, 2014, 24(8):1231-1241.
[18] Marrant B A H, van-Holten T. Comparison of smart rotor blade concepts for large offshore wind turbines[C]//Offshore Wind Energy and other Renewable Energies in Mediterranean and European Seas, Civitavecchia:Italy, 2006:1-11.
[19] Meguid S A, Su Y, Wang Y. Complete morphing wing design using flexible-rib system[J]. International Journal of Mechanics & Materals in Design, 2015, 13(1):1-13.
[20] Vasista S, de-Gaspari A, Ricci S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering & Aerospace Technology, 2016, 88(2):311-330.
[21] Jenett B, Calisch S, Cellucci D, et al. Digital morphing wing:active wing shaping concept using composite latticebased cellular structures[J]. Soft Robotics, 2017, 4(1):33-48.
[22] Cramer N, Croom M, Cheung K, et al. Design and testing of a cellular composite active twist wing[C]//AIAA/AHS Adaptive Structures Conference, San Diego:AIAA, 2016:1085.
[23] 祝连庆,孙广开,李红,等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14):44-58.
[24] Bragg M B, Gregorek G M. Experimental study of airfoil performance with vortex generators[J]. Journal of Aircraft, 1987, 24(5):305-309.
[25] Calarese W, Crisler W P. Afterbody drag reduction by vortex generators[C]//Aerospace Sciences Meeting, Nevada:AIAA, 1985:1-7.
[26] Lin J C. Control of turbulent boundary-layer separation using micro vortex generators[C]//Fluid Dynamics Conference, Norfolk:AIAA, 1999:3404.
[27] Gamerdinger P M, Shreeve R P. The efects of low-profile vortex generatorson flow in a transonic fan-blade cascade.[C]//Aerospace Sciences Meeting and Exhibit, Navada:AIAA, 1996:250.
[28] Ashill P R, Fulker J L, Hackett K C. Research at DERA on sub boundary layer vortex generators (SBVGs)[C]//Aerospace Sciences Meeting and Exhibit, Nevada:AIAA, 2001:16702.
[29] Ashill P R, Fulker J L, Hackett K C. Studies of flows induced by sub boundary layer vortex generators (SBVGs)[C]//Aerospace Sciences Meeting and Exhibit, Nevada:AIAA, 2002:14121.
[30] 胡万林,于剑,刘宏康,等. 叶片式涡流发生器对压缩拐角流动分离的控制[J]. 航空学报, 2018, 39(7):122049.
[31] Urkiola A, Fernandes-Gamiz U, Errasti I, et al. Computational characterization of the vortex generated by a Vortex Generator on a flat plate for different vane angles[J]. Aerospace Science and Technology, 2017, 65:18-25.
[32] Velte C M, Hansen M O L, Meyer K E, et al. Evaluation of the Performance of Vortex Generators on the DU 91-W2-250 Profile usingStereoscopic PIV[C]//WMSCI 2008:12th World Multi-Conferenceon Systemics, Cybernetics and Informatics, Florida:WMSCI, 2008:263-267.
[33] Mueller-Vahl H, Pechlivanoglou G, Nayeri C N, et al. Vortex generators for wind turbine blades:a combined windtunnel and wind turbine parametric study[C]//Proceedings of ASME Turbo Expo 2015:Turbine TechnicalConference and Exposition, Copenhagen:ASME, 2012:899-914.
[34] Hwangbo H, Ding Y, Eisele O, et al. Quantifying the effect of vortex generator installation on wind power production An academia-industry case study[J]. Renewable Energy, 2017, 113:1589-1597.
[35] 乔渭阳,仝帆,陈伟杰,等. 仿生学气动噪声控制研究的历史_现状和进展[J]. 空气动力学学报, 2018, 36(1):98-121.
[36] Howe M S. Aerodynamic noise of a serrated[J]. Journal of Fluids and Structures, 1991, 5(1):33-45.
[37] Gruber M, Joseph P F. Experimental investigation of airfoil self noise and turbulent wake reduction by the use of trailing edge serrations[C]//AIAA/CEAS Aeroacoustics Conference, Stockholm:AIAA, 2010:3803.
[38] Moreau D J, Doolan C J. Tonal Noise from Trailing Edge Serrations at Low Reynolds Number[C]//AIAA/CEAS Aeroacoustics Conference, Berlin:AIAA, 2013:2010.
[39] Arina R, Ratta R D, Iob A. Numerical Study of Self-Noise Produced by an Airfoil with Trailing-Edge Serrations[C]//AIAA/CEAS Aeroacoustics Conference, Colorado Springs:AIAA, 2012:2184.
[40] Jones L R, Sandberg R D. Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations[J]. Journal of Fluid Mechanics, 2012, 706:295- 322.
[41] Dassen T, Parchen R, Bruggeman J, et al. Results of a wind tunnel study on the reduction of airfoil self-noise by the application of serrated blade trailing edges[C]//European Union Wind Energy Conference and Exhibition, Gothenburg:NLR, 1996:96350.
[42] Oerlemans S, Fisher M, Maeder T, et al. Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations[J]. AIAA Journal, 2009, 47(6):1470-1481.
[43] 程颢颐,乔渭阳,陈伟杰,等. 基于仿生学结构的翼型降噪实验研究[J]. 工程热物理学报, 2018, 30(10):2159-2170.
[44] Gray J. Studies in animal locomotion VI. the propulsive powers of the dolphin[J]. Journal of Experimental Biology, 1936, 13(1):192-201.
[45] Walsh M J, Lindemann A M. Optimization and application of riblets for turbulent drag reduction[C]//Aerospace Sciences Meeting, Reno:AIAA, 1984:347.
[46] Ball P. Engineering:Shark skin and other solutions[J]. Nature, 1999, 400(6744):507-509.
[47] Bechert D W, Bruse M, Hage W, et al. Biological surfaces and their technological application-Laboratory and flight experiments on drag reduction and separation control[C]//Fluid Dynamics Conference, Snowmass Village:AIAA, 1997:1-34.
[48] Walsh M J, Weinstein L M. Drag and heat transfer on surfaces with small longitudinal fins[C]//Fluid and PlasmaDynamics Conference, Swattle:AIAA, 1978:1161.
[49] Li D, Liu X M. Aerodynamic performance and acoustic characteristics of bionic airfoil inspired by three-dimensional long-eared owl wing under low reynolds number[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition, Seoul:ASME, 2016:57137.
[50] 汪睿,李典,刘小民. 鸟翼表面非光滑结构流动控制机理研究[J]. 空气动力学学报, 2018, 36(1):144-150.
[51] 华欣. 海鸥翅翼气动性能研究及其在风力机仿生叶片设计中的应用[D]. 吉林:吉林大学, 2013.
[52] Ikeda T, Tanaka H, Yoshimura R, et al. A robust biomimetic blade design for micro wind turbines[J]. Renewable Energy, 2018, 125:155-165.
[53] Fish F E, Battle J. Hydrodynamic design of the humpback flipper[J]. Journal of Morphology, 1995, 225(1):51-60.
[54] van-Nierop E A, Alben S, Brenner M P. How bumps on whale flippers delay stall an aerodynamic model[J]. Physical Review Letters, 2008, 100(5):54502.
[55] Johari H, Henoch C, Custodio D, et al. Effects of leadingedge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11):2634-2642.
[56] Watts P,Fish F E. The influence of passive leading edge tubercles on wing performance[C]//UUST01. Proceedings of the Twelfth International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, USA:Autonomous Undersea Systems Inst., 2001:1-8.
[57] 王国付. 仿鲸鱼鳍凹凸前缘翼型流动分离控制及应用研究[D]. 北京:中国科学院工程热物理研究所, 2014.
[58] Hansen K, Kelso R M, Doolan C. Reduction of flow induced tonal noise through leading edge tuberclemodifications[C]//AIAA/CEAS Aeroacoustics Conference, Stockholm:AIAA, 2010:3700.
[59] Gruber M, Joseph P F. Noise reduction using combined trailing edge and leading edge serrations in a tandem airfoil experiment[C]//AIAA/CEAS Aeroacoustics Conference, Colorado Springs:AIAA, 2013:2134.
[60] 林建中,阮晓东,陈邦国,等. 流体力学[M]. 北京:清华大学出版社, 2013:354-355.
[61] Zha G C, Craig P. A. Novel airfoil circulation augment flow control method using Co-Flow Jet[C]//2nd AIAA Flow Control Conference, Portland:AIAA, 2004:2208.
[62] Zha G C, Carroll B F. High-performance airfoil using coflow[J]. AIAA Journal, 2007, 45(8):2087-2090.
[63] Zha G C, Gao W, Paxton C D. Jet effects on coflow jet airfoil performance[J]. AIAA Journal, 2007, 45(6):1222-1231.
[64] Wang B Y, Haddoukessouni B, Levy J, et al. Numerical investigations of injection-slot-size effect on the performance of coflow jet airfoils[J]. Journal of Aircraft, 2008, 45(6):2084-2091.
[65] 许建华,李凯,宋文萍,等. 低雷诺数下协同射流关键参数对翼型气动性能的影响[J]. 航空学报, 2018, 39(8):122018.
[66] Xu H Y, Xing S L, Ye Z Y. Numerical study of the S809 airfoil aerodynamic performance using a co-flow jet active control concept[J]. Journal of Renewable and Sustainable Energy, 2015, 7(2):23131.
[67] Ingard U, Labate S. Acoustic circulation effects and the nonlinear impedance of orifices[J]. The Journal of the Acoustical Society of America, 1950, 22(2):211-218.
[68] Wiltse J M, Glezer A. Manipulation of free shear flows using piezoelectric actuators[J]. Journal of Fluid Mechanics, 1993, 249:261-285.
[69] Holman R, Utturkar Y, Mittal R, et al. Formation criterion for synthetic jets[J]. AIAA Journal, 2005, 43(10):2110-2116.
[70] 祝健,康顺,王晓东. 激励特性对零质量射流的影响[J]. 工程热物理学报, 2017, 38(6):1217-1223.
[71] Amitay M, Honohan A, Trautman M, et al. Modification of the aerodynamic characteristics of bluff bodies using synthetic jet actuators[C]//APS Division of Fluid Dynamics Meeting, Snowmass:AIAA, 1997:97-2004.
[72] Smith D R, Amitay M, Kibens V, et al. Modification of lifting body aerodynamics using synthetic jet actuators[C]//Aerospace Sciences Meeting & Exhibit, Reno:AIAA, 1998:98-209.
[73] Duvigneau R, Visonneau M. Simulation and optimization of stall control for an airfoil with a synthetic jet[J]. Aerospace Science and Technology, 2006, 10(4):279-287.
[74] 张攀峰,王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报, 2008, 34(4):443-446.
[75] 张攀峰,王晋军. 孔口倾斜角对合成射流控制翼型流动分离的影响[J]. 兵工学报, 2009, 30(12):1658-1662.
[76] Kandil O A, Kamaci V, Gercek E. Development and applications of synchronized, alternating-angle direction oscillatory (SAADO) synthetic jets[C]//AIAA Flow Control Conference, Portland:AIAA, 2004:2316.
[77] Li W C, Jin D P, Zhao Y H. Efficient nonlinear reduced-order modeling for synthetic-jet-based control at high angle of attack[J]. Aerospace Science and Technology, 2017, 62:98-107.
[78] Zhu H T, Hao W X, Li C, et al. Simulation on flow control strategy of synthetic jet in an vertical axis wind turbine[J]. Aerospace Science and Technology, 2018, 77:439-448.
[79] 张攀峰,王晋军,冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学E辑:技术科学, 2008, 38(3):321-349.
[80] 张谷令,敖玲,胡建芳. 应用等离子体物理学[M]. 北京:首都师范大学出版社, 2008:1-8.
[81] Malik M R, Weinstein L M, Hussaini M Y. Ion wind drag reduction[C]//Aerospace Sciences Meeting, Reno:AIAA, 1983:17914.
[82] 吴云,李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405.
[83] 聂万胜,程钰锋,车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6):722-734.
[84] Roth J R, Sherman D M, Wilkinson S P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma[C]//AIAA Aerospace Sciences Meeting and Exhibit, Reno:AIAA, 1998:328.
[85] Corke T C, Jumper E J, Post M L, et al. Application of weakly-ionized plasmas as wing flow-control devices[C]//AIAA Aerospace Sciences Meeting and Exhibit, Reno:AIAA, 2002:350.
[86] Roth J T, Dai X. Optimization of the Aerodynamic Plasma Actuator as an Electrohydrodynamic (EHD) Electrical Device[C]//AIAA Aerospace Sciences and Exhibit, Reno:AIAA, 2006:1203.
[87] Patel M P, Sowle Z H, Corke T C, et al. Autonomous sensing and control of wing stall using a smart plasma slat[J]. Journal of Aircraft, 2007, 44(2):516-527.
[88] Riherd M, Roy S. Numerical investigation of serpentine plasma actuators for separation controlat low reynolds number[C]//AIAA Fluid Dynamics Conference and Exhibit, Honolulu:AIAA, 2011:3990.
[89] 李洋,梁华,贾敏,等. 等离子体合成射流改善翼型气动性能实验研究[J]. 推进技术, 2017, 38(9):1943-1949.
[90] Robert C N, Corke T C, Othman H. A smart wind turbine blade using distributed plasma actuators for improved performance[C]//Aerospace Sciences Meeting, Reno:AIAA, 2008:1312.
[91] Greenblatt D, Ben-Harav A, Schulman M. Dynamic stall control on a vertical-axis wind turbine using plasma actuators[C]//AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville:AIAA, 2012:233.
[92] Zhang P F, Yan B, Liu A B, et al. Numerical simulation on plasma circulation control airfoil[J]. AIAA Journal, 2010, 48(10):2213-2226.
[93] Feng L H, Jukes T N, Choi K S. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap[J]. Experiments in Fluids, 2012, 52(6):1533-1546.

基金

中央高校基本科研业务费专项资金资助(2019QN021)
PDF(6151 KB)

1316

Accesses

0

Citation

Detail

段落导航
相关文章

/