基于风险指引的光热电站高温熔盐储罐结构强度设计研究

曾鑫, 蔡君, 郑维栋, 李芳芽, 叶冬挺, 胡靖东, 刘长军

机械强度 ›› 2022, Vol. 44 ›› Issue (3) : 676-683.

PDF(920 KB)
PDF(920 KB)
机械强度 ›› 2022, Vol. 44 ›› Issue (3) : 676-683. DOI: 10.16579/j.issn.1001.9669.2022.03.023
焊接·铸造·锻压·热材料

基于风险指引的光热电站高温熔盐储罐结构强度设计研究

  • 曾鑫1, 蔡君1, 郑维栋2, 李芳芽2, 叶冬挺2, 胡靖东1, 刘长军1
作者信息 +

RISK-INFORMED STRENGTH DESIGN OF HOT MOLTEN SALT STORAGE TANK FOR CSP PLANTS

  • ZENG Xin1, CAI Jun1, ZHENG WeiDong2, LI FangYa2, YE DongTing2, HU JingDong1, LIU ChangJun1
Author information +
文章历史 +

摘要

高温熔盐储罐是太阳能光热电站中关键储能设备。同类设备的事故表明,基于一般强度设计规范的储罐存在周期性开裂风险。以某100 MW塔式光热电站为例,在高温结构强度设计理论的基础上,引入风险指引型设计方法,逆向计算风险源的量化控制指标。结果表明:罐底等效摩擦因数大于0.65时,储罐将在开工升温阶段产生棘轮损伤;当沙层大于60 mm时,引起的地基沉降将导致储罐注满后侧壁的瞬时开裂;进口熔盐温度波动若超出-20℃~+25℃,则会引发罐底高周疲劳断裂或屈曲失效。同时,建议通过适当增加罐底中心高度(<29 mm)以预防热应力失效。

Abstract

Hot molten salt storage tank is the key energy storage equipment in solar thermal power stations. The accidents of similar equipment indicates that there is a risk of periodic cracking for storage tanks based on general strength design specifications. Based on the high-temperature structural strength design theory, risk-informed design methods were introduced to a 100 MW CSP plant. Quantitative control indicators for risk sources were reversely calculated. The results show that when the equivalent friction coefficient of bottom plate is greater than 0.65, the tank could have ratchet damage during heat-up stage. When the thickness of sand layer is greater than 60 mm, the sidewall of the storage tank could be instantaneously fractured. The range of temperature fluctuation should be limited between-20℃ and +25℃ to avoid high cycle fatigue fracture and buckling. Meanwhile, it is recommended to appropriately increase the center height of the tank bottom(<29 mm) to prevent thermal stress failure.

关键词

高温熔盐储罐 / 风险指引设计 / 摩擦力 / 地基沉降 / 温度波动

Key words

Hot storage tank / Risk-informed design / Friction / Foundation settlement / Temperature fluctuation

引用本文

导出引用
曾鑫, 蔡君, 郑维栋, 李芳芽, 叶冬挺, 胡靖东, 刘长军. 基于风险指引的光热电站高温熔盐储罐结构强度设计研究[J]. 机械强度, 2022, 44(3): 676-683 https://doi.org/10.16579/j.issn.1001.9669.2022.03.023
ZENG Xin, CAI Jun, ZHENG WeiDong, LI FangYa, YE DongTing, HU JingDong, LIU ChangJun. RISK-INFORMED STRENGTH DESIGN OF HOT MOLTEN SALT STORAGE TANK FOR CSP PLANTS[J]. Journal of Mechanical Strength, 2022, 44(3): 676-683 https://doi.org/10.16579/j.issn.1001.9669.2022.03.023

参考文献

[1] 杜尔顺,张宁,康重庆,等.太阳能光热发电并网运行及优化规划研究综述与展望[J].中国电机工程学报,2016,36(21):5765-5775.DU ErShun,ZHANG Ning,KANG ChongQing,et al.Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J].Proceedings of the CSEE,2016,36(21):5765-5775(In Chinese).
[2] Zhang H,Baeyens J,Cáceres G,et al.Thermal energy storage:Recent developments and practical aspects[J].Progress in Energy and Combustion Science,2016(53):1-40(In Chinese).
[3] 国家能源局.太阳能发展"十三五"规划[J].太阳能,2016(12):5-14.National Energy Board.Solar energy development "13th five-year" plan[J].Solar Energy,2016(12):5-14(In Chinese).
[4] Wan Z,Wei J,Qaisrani M A,et al.Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system[J].Applied Thermal Engineering,2020(167):114775.
[5] Tian Y,Zhao C Y.A review of solar collectors and thermal energy storage in solar thermal applications[J].Applied Energy,2013(104):538-553.
[6] Prieto C,Osuna R,Fernández A I,et al.Thermal storage in a MW scale.Molten salt solar thermal pilot facility:Plant description and commissioning experiences[J].Renewable Energy,2016(99):852-866.
[7] 王宝轩,沈功田,闫河,等.大型石油储罐健康管理方法应用研究[J].机械工程学报,2017,53(16):125-133.WANG BaoXuan,SHEN GongTian,YAN He,et al.Research and application of health management method of large oil storage tank[J].Journal of Mechanical Engineering,2017,53(16):125-133(In Chinese).
[8] Api standard 650,welded tanks for oil storage[S].API Publishing Services,2013:1-511.
[9] 全球光热电站各类事故汇总为国内示范项目开发打剂预防针[EB/OL].http://guangfu.bjx.com.cn/news/20170313/813418.shtml.A summary of various accidents in CSP stations around the world.Develop a shot for domestic demonstration projects[EB/OL].http://guangfu.bjx.com.cn/news/20170313/813418.shtml (In Chinese).
[10] Caruso M A,Cheok M C,Cunningham M A,et al.An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[J].Reliability Engineering and System Safety,1999,63(3):231-242.
[11] Schumock G,Zhang S,Farshadmanesh P,et al.Integrated risk-informed design (I-RID) methodological framework and computational application for FLEX equipment storage buildings of nuclear power plants[J].Progress in Nuclear Energy,2020(120):103186.
[12] 胡靖东,刘长军,轩福贞.基于Cock-Ashby模型的多轴蠕变设计准则的局限性及其修正[J].机械工程学报,2017,53(16):141-147.HU JingDong,LIU ChangJun,XUAN FuZhen.On the limitation and modification of cocks-ashby model based multiaxial creep design criteria[J].Journal of Mechanical Engineering,2017,53(16):141-147(In Chinese).
[13] 尚德广,孙国芹,蔡能,等.高温比例与非比例加载下多轴疲劳寿命预测[J].机械强度,2006(2):245-249.SHANG DeGuang,SUN GuoQin,CAI Neng,et al.Multiaxial fatigue life prediction under proportional and non-proportional loading at high temmperature[J].Journal of Mechanical Strength,2006(2):245-249(In Chinese).
[14] 胡靖东,轩福贞,张效成,等.辐照蠕变寿命外推方法[J].中国机械工程,2018,29(24):3014-3019.HU JingDong,XUAN FuZhen,ZHANG XiaoCheng,et al.Irradiation creep life extrapolation method[J].China Mechanical Engineering,2018,29(24):3014-3019(In Chinese).
[15] ASME B&PV Code,Section II,Part D-materials properties (Metric)[S].American Society for Mechanical Engineers,2015:802-840.
[16] ASME B&PV Code,Section VIII,Division 2-alternative rules[S].American Society for Mechanical Engineers,2015:600-602.
[17] 刘斌,王任,黄泽茂,等.一种双层夹套高温熔盐储罐[P].中国:CN207226152U,2018-04-13.LIU Bin,WANG Ren,HUANG ZeMao,et al.Double-layer jacketed high-temperature molten salt storage tank[P].China:CN207226152U,2018-04-13(In Chinese).
[18] Zeng X,Wang X,Li H,et al.Strength and creep-fatigue analysis of a molten-salt storage tank[C].Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM).IEEE,2019:742-746.
[19] Zaversky F,Rodríguez-García M M,García-Barberena J,et al.Transient behavior of an active indirect two-tank thermal energy storage system during changes in operating mode-an application of an experimentally validated numerical model[J].Energy Procedia,2014(49):1078-1087.
[20] Flueckiger S M,Yang Z,Garimella S V.Review of molten-salt thermocline tank modeling for solar thermal energy storage[J].Heat Transfer Engineering,2013,34(10):787-800.
[21] Flueckiger S,Yang Z,Garimella S V.An integrated thermal and mechanical investigation of molten-salt thermocline energy storage[J].Applied Energy,2011,88(6):2098-2105.
[22] ASME B&PV Code,Section III,Division 1-Subsection NH[S].American Society for Mechanical Engineers,2015:42-75.
PDF(920 KB)

558

Accesses

0

Citation

Detail

段落导航
相关文章

/