水平冲击条件下不同撞击速度对乘员头部伤害影响分析

朱鲜飞, 冯蕴雯, 薛小锋, 朱铮铮

机械强度 ›› 2020, Vol. 42 ›› Issue (2) : 374-383.

PDF(5984 KB)
PDF(5984 KB)
机械强度 ›› 2020, Vol. 42 ›› Issue (2) : 374-383. DOI: 10.16579/j.issn.1001.9669.2020.02.018
设计·计算

水平冲击条件下不同撞击速度对乘员头部伤害影响分析

  • 朱鲜飞, 冯蕴雯, 薛小锋, 朱铮铮
作者信息 +

INFLUENCE OF DIFFERENT IMPACT VELOCITY ON OCCUPANT HEAD INJURYUNDER HORIZONTAL IMPACT

  • ZHU XianFei, FENG YunWen, XUE XiaoFeng, ZHU ZhengZheng
Author information +
文章历史 +

摘要

适坠性的本质是研究对人(机组人员和乘客)的保护,而乘员头部伤害在坠撞事故中占有较大的比重。为了研究水平冲击条件下不同撞击速度对乘员头部伤害的影响,提出以乘员损伤等级(Abbreviated Injury Scale,AIS)和乘员伤害风险概率来评价乘员伤害的综合评估方法,并以典型民机双椅管三联座椅为研究对象,利用LS-Dyna软件构建了假人-座椅-约束系统动力学仿真模型,分析了不同撞击速度(8.0 m/s、10.0 m/s、12.0 m/s、14.0 m/s、16.0 m/s)对乘员头部伤害的影响及伤害发生的阶段、特点等。假人动态响应分析结果表明:在飞机纵向坠撞过程中,乘员有可能受到严重的头部和腿部伤害,乘员头部伤害随着撞击速度的增大而快速增大,乘员伤亡率随着撞击速度的增大而呈指数式增长,乘员腿部运动剧烈,增大了与舱内其他设施碰撞的风险,此外,乘员低头运动幅度、安全带载荷峰值与撞击速度亦成正比关系。因此,当坠撞事故发生时应设法控制水平撞击速度(13.0 m/s时,乘员伤亡率<10%;16.0 m/s时,乘员伤亡率>80%)。

Abstract

The essence of crashworthiness is to study the protection of people (crew and passengers), and the head injury of the occupants accounted for a large proportion in the crash. In order to investigate the influences of different impact velocity on the occupant's head injury under horizontal impact conditions, a comprehensive evaluation method based on occupant's Abbreviated Injury Scale (AIS) and occupant's injury risk probability to evaluate occupant injury is proposed, and a dynamic simulation model which including seat, restraint system and dummy was constructed by LS-Dyna software. Take the typical civil aircraft double-tube triple-seat as research objects, the effects of different horizontal impact velocity (8.0 m/s, 10.0 m/s, 12.0 m/s, 14.0 m/s, 16.0 m/s) on the head injury of occupants, the stages and characteristics of injuries were analyzed. The results of dummies' dynamic response analysis shows that occupants may be severely injured in the head and legs during the aircraft's longitudinal impact, occupant' head injury increases rapidly with the increase of horizontal impact velocity, and occupant' fatality rate increases exponentially with increasing horizontal impact velocity, the substantial leg movement of the occupants greatly increase the risk of injuries caused by collisions with other facilities in the cabin. In addition, the dummies' head trajectory, the peak load of seat belt is proportional to the horizontal impact velocity. Therefore, when the crash occurs, the horizontal impact velocity should be controlled deliberately (the fatality rate was less than 10% when the impact velocity was 13.0m/s, and more than 80% when the impact velocity was 16.0m/s).

关键词

假人-座椅-约束系统 / 水平冲击 / 头部伤害 / 撞击速度 / 数值仿真

Key words

Dummy-seat-restraint system / Horizontal impact / Head injury / Impact velocity / Numerical simulation

引用本文

导出引用
朱鲜飞, 冯蕴雯, 薛小锋, 朱铮铮. 水平冲击条件下不同撞击速度对乘员头部伤害影响分析[J]. 机械强度, 2020, 42(2): 374-383 https://doi.org/10.16579/j.issn.1001.9669.2020.02.018
ZHU XianFei, FENG YunWen, XUE XiaoFeng, ZHU ZhengZheng. INFLUENCE OF DIFFERENT IMPACT VELOCITY ON OCCUPANT HEAD INJURYUNDER HORIZONTAL IMPACT[J]. Journal of Mechanical Strength, 2020, 42(2): 374-383 https://doi.org/10.16579/j.issn.1001.9669.2020.02.018

参考文献

[1] T H Barth, P Balcena. Aircraft impact and injury patterns in US army aircraft accidents from 1983 to 2005[C]//The Fifth Triennial International Aviation Fire and Cabin Safety Research Conference. Atlantic City, NJ, 2007:1-12.
[2] CCAR-25-R4, 中国民用航空规章:第25部-运输类飞机适航标准[S]. 北京:中国民用航空局, 2011:55-56. CCAR-25-R4, China civil aviation regulations:Part 25-transport aircraft airworthiness standards[S]. Beijing, CAAC, 2011:55-56(In Chinese).
[3] A Airoldi, G Janszen. A design solution for a crashworthy landing gear with a new triggering mechanism for the plastic collapse of metallic tubes[J]. Aerospace Science and Technology, 2005(9):445-455.
[4] 罗漳平, 向锦武. 直升机起落架抗坠毁性能的有限元仿真评估[J]. 航空学报, 2003, 24(3):216-219. LUO ZhangPing, XIANG JinWu. Crashworthiness performance evaluation to helicopter landing gear by finite element simulation[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3):216-219(In Chinese).
[5] 邹田春, 郝鹏, 冯振宇, 等. 斜撑杆对复合材料机身段适坠性能的影响研究[J]. 机械强度, 2013, 35(4):546-550. ZOU TianChun, HAO Peng, FENG ZhenYu, et al. Research on effects of oblique struts on crashworthiness properties of fuselage sections[J]. Journal of Mechanical Strength, 2013, 35(4):546-550(In Chinese).
[6] 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12):2202-2210. LIU XiaoChuan, ZHOU SuFeng, MA JunFeng, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2202-2210(In Chinese).
[7] 李梦晓, 向锦武, 任毅如, 等. 航空座椅适坠性评估与分析方法[J]. 北京航空航天大学学报, 2016, 42(2):383-390. LI MengXiao, XIANG JinWu, REN YiRu, et al. Evaluation and analysis method of aviation seat crashworthiness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):383-390(In Chinese).
[8] D Y Hu, J L Yang, M H Hu. Full-scale vertical drop test and numerical simulation of a crashworthy helicopter seat/occupant system[J]. International Journal of Crashworthiness, 2009, 16(6):565-583.
[9] E L Fasanella, K E Jackson. Impact testing and simulation of a crashworthy composite fuselage section with energy-absorbing seats and dummies[R]. NASA/TM-2002-211731, National Aeronautics and Space Administration, Virginia, 2002:1-12.
[10] C D Waagmeester, E van Hassel, C G Huijskens. Design optimization and evaluation of a three-point hardness seat design for Airbus A320 aircraft family[C]//The Fourth Triennial International Aircraft Fire and Cabin Safety Research Conference. Lisbon, Portugal, 2004:1-14.
[11] Christian Olschinka, Axel Schumacher. Dynamic simulation of flight passenger seats[C]//LS-Dyna Conference, 2006:41-58.
[12] Todd R Hurley, Jill M Vandenburg. Small airplane crashworthiness design guide[R]. AGATE-WP3.4-034043-036, The AGATE Integrated Design and Manufacturing Technical Council, 2002:69-78; 2002:246-250.
[13] Ghanashyam Prabhu. Parametric study of head paths and HIC data for aircraft seat and cabin interior certification[D]. India:Wichita State University, 2006:24-64.
[14] T H Barth, S M R Hashemi. Modeling of direct head impact injury mechanism applied to transport aircraft:are long pitch seats safe[R/OL]. http://www.fire.tc.faa.gov., 2003:1-9.
[15] 何春亮, 项小平. 基于MSC.Dytran的带人体的农林5A型飞机结构纵向坠撞仿真分析[J]. 洪都科技, 2008:1-10. HE ChunLiang, XIANG XiaoPing. Analysis on longitudinal crash simulation of agriculture airplane N5A Structure with dummy based on MSC. Dytran[J]. Hongdu Science and Technology, 2008:1-10(In Chinese).
[16] 黄万甲, 韩亮. 某型航空座椅装机动态水平冲击试验临界状态选取[J]. 机械强度, 2016, 38(3):662-666. HUANG WanJia, HAN Liang. Critical state selection of the dynamic horizontal impact test for a certain type airline seat installed[J]. Journal of Mechanical Strength, 2016, 38(3):662-666(In Chinese).
[17] 郑亚明. 某轻型飞机驾驶员座椅装机动态水平冲击试验分析[J]. 中国科技信息, 2015(10):31-33. ZHENG YaMing. Dynamic horizontal impact test analysis of a light aircraft driver's seat installed[J]. China Science and Technology Information, 2015(10):31-33(In Chinese).
[18] Pradeep Mohan, Dhafer Marzougui, Cing-Dao Kan. Development and validation of hybrid Ⅲ crash test dummy[C]//SAE World Congress & Exhibition, 2009:1-9.
[19] Marco Anghileri, Luigi-M L Castelletti, Emanuele Fracasso. Hybrid Ⅲ numerical model for aircraft seat crash performance assessment[J]. Journal of Aircraft, 2007, 44(5):1691-1700.
[20] P S Bhonge, C K Thorbole, H M Lankarani. Computational modeling and performance evaluation of a DAX-Foam aircraft seat cushion utilizing high loading rate dynamic characteristics[C]//Proceeding of the ASME 2010 International Mechanical Engineering Congress & Exposition, Canada, 2010:1-8.
[21] N E Dhole. Development and validation of a finite element model of a transport aircraft seat under Part 25.562 dynamic test conditions[D]. Kansas:Wichita State University, 2010:43.
[22] G Olivares. Hybrid Ⅱ and federal aviation administration hybrid Ⅲ anthropomorphic test dummy dynamic evaluation test series[R]. FAA Rep. DOT/FAA/AR-11/24. National Technical Information Service, Springfield, Virginia, 2013:23-24; 2013:81-89.
[23] AAAM. The abbreviated injury scale 2005[M]. Barrington, Illinois, Association for the Advancement of Automotive Medicine, 2005:87-90.
[24] Pike J A. Automotive safety:Anatomy, injury, testing and regulation[M]. Society of Automotive Engineers, 1990:47-57.
[25] P Prasad, H J Mertz. The position of the U.S. delegation to the ISO working group 6 on the use of HIC in the automotive environment[R]. SAE Technical Paper 851246. Warrendale, PA:Society of Automotive Engineers, 1985:1-11.
[26] H J Mertz, P Prasad, G Nusholtz. Head injury risk assessment for forehead impacts[R]. SAE Technical Paper 960099. Warrendale, PA:Society of Automotive Engineers, 1996:1-17.

基金

民用飞机专项科研技术研究项目(MJZ-Y-2016-76)资助
PDF(5984 KB)

264

Accesses

0

Citation

Detail

段落导航
相关文章

/