Influence and Optimization of the Process Parameter Coupling of the Gap between Squeezer Rollers on the Properties of Composite Wet Winding Products

HAN Yuze, LIU Yanpeng, REN Mingfa, ZU Lei, HE Jingxuan

Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (5) : 354-363.

PDF(527 KB)
PDF(527 KB)
Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (5) : 354-363. DOI: 10.3901/JME.2025.05.354

Influence and Optimization of the Process Parameter Coupling of the Gap between Squeezer Rollers on the Properties of Composite Wet Winding Products

  • HAN Yuze1, LIU Yanpeng2, REN Mingfa1,3,4, ZU Lei5,6, HE Jingxuan5,6
Author information +
History +

Abstract

Consideration of the gap between squeezer rollers in wet filament winding, with the interlayer shear strength, porosity, and fiber volume fraction as performance characterization parameters for winding products. A response surface methodology to design wet filament winding experiments with three factors and three levels is employed, and the sensitivity of the gap between squeezer rollers on the performance characterization parameters is analysed. A multivariate regression predictive model that takes into account the gap between squeezer rollers along with various process parameters and different performance characterization parameters is established, revealing the influence of the gap between squeezer rollers on product performance under different conditions. Furthermore, the coupling effects of the gap between squeezer rollers with winding tension and winding speed on product performance mechanisms is analysed. Based on a multiple regression prediction model, a multi-objective optimization scheme is developed using the main objective method, and a winding experiment is designed. The results show that the optimized process parameter combination obtained through this method not only reduces the porosity of the winding product but also improves its mechanical properties, effectively enhancing the overall quality of wet-winding products.

Key words

composites / fiber winding / gap between squeezer rollers / process parameters / interlayer shear strength / porosity / parameter optimization

Cite this article

Download Citations
HAN Yuze, LIU Yanpeng, REN Mingfa, ZU Lei, HE Jingxuan. Influence and Optimization of the Process Parameter Coupling of the Gap between Squeezer Rollers on the Properties of Composite Wet Winding Products[J]. Journal of Mechanical Engineering, 2025, 61(5): 354-363 https://doi.org/10.3901/JME.2025.05.354

References

[1] 米君杰, 姚建勇,邓文翔. 基于神经网络的缠绕过程张力积分鲁棒控制[J]. 机械工程学报,2021,57(24):74-82. MI Junjie,YAO Jianyong,DENG Wenxiang. Neural network based RISE control of winding tension[J]. Journal of Mechanical Engineering,2021,57(24):74-82.
[2] 尚耀星,李瑶,于天,等. 轻量化复合材料液压缸现状及挑战[J]. 机械工程学报,2021,57(24):13-38. SHANG Yaoxing,LI Yao,YU Tian,et al. Review and challenges of lightweight composite hydraulic cylinder[J]. Journal of Mechanical Engineering,2021,57(24):13-38.
[3] ZHANG M,LV H,KANG H,et al. A literature re-view of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks[J]. International Journal of Hydrogen Energy,2019,44(47):25777-25799.
[4] PREUSTER P,ALEKSEEV A,WASSERSCHEID P. Hydrogen storage technologies for future energy systems[J]. Annual Review of Chemical and Biomolecular Engineering,2017,8:445-471.
[5] 邢丽英,李亚锋,陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报,2022,39(9):4179-4186. XING Liying,LI Yafeng,CHEN Xiangbao. Status and role of the advanced composite materials in the development of aviation equipment[J]. Acta Materiae Compositae Sinica,2022,39(9):4179-4186.
[6] 颜勇,牟星,张骞,等. 基于多尺度的固体火箭发动机复合材料壳体及其缠绕纤维强度精确预示[J]. 固体火箭技术,2022,45(6):817-829. YAN Yong,MOU Xing,ZHANG Qian,et al. Accurate prediction of winding fibre strength of solid rocket motor composite case based on multiscale method[J].Journal of Solid Rocket Technology,2022,45(6):817-829.
[7] 刘嘉鸣,全东,赵国群. 航空复合材料连接成形技术研究进展[J]. 机械工程学报,2023,59(20):119-142. LIU Jiaming,QUAN Dong,ZHAO Guoqun. Progress in joint forming technology of aviation composites[J]. Journal of Mechanical Engineering,2023,59(20):119-142.
[8] 康超. 预浸带缠绕成型筒形件关键性能建模及其工艺参数优化设计[D]. 西安:西北工业大学,2018. KANG Chao. Research on key performance modeling and process parameters optimized design for prepreg tape cylinder winding[D]. Xi'an:Northwestern Polytechnical University,2018.
[9] LU H,SCHLOTTERMULLER M,HIMMEL N,et al. Effects of tape tension on residual stress in thermoplastic composite filament winding[J]. Journal of Thermoplastic Composite Materials,2005,18(6):469-487.
[10] SCHLOTTERMULLER M,LU H,ROTH Y,et al. Thermal residual stress simulation in thermo-plastic filament winding process[J]. Journal of Thermoplastic Composite Materials,2003,16(6):497-519.
[11] PARLEVLIET P P,BERSEE H E N,BEUKERS A. Residual stresses in thermoplastic composites-A study of the literature-Part I:Formation of residual stresses[J]. Composites,Part A. Applied Science and Manufacturing,2006,37a(11):1847-1857.
[12] GUZMAN-MALDONADO E,HAMILA N,NAOUAR N,et al. Simulation of thermoplastic prepreg thermoforming based on a viscohyperelastic model and a thermal homogenization[J]. Materials & Design,2016,93:431-442.
[13] WANG Q,LI T,WANG B,et al. Prediction of void growth and fiber volume fraction based on fil-ament winding process mechanics[J]. Composite Structures,2020,246:112432.
[14] DACKWEILER M,HAGEMANN L,COUTANDIN S,et al. Experimental investigation of frictional behavior in a filament winding process for joining fiber-reinforced profiles[J]. Composite Structures,2019,229:111436.
[15] BLACHUT A,WOLLMANN T,PANEK M,et al. Influence of fiber tension during filament winding on the mechanical properties of composite pressure vessels[J]. Composite Structures,2023,304:116337.
[16] MERTINY P,ELLYIN F. Influence of the filament winding tension on physical and mechanical properties of reinforced composites[J]. Composites Part A,2002,33:1615-1629.
[17] MERTINY P,ELLYIN F. Selection of optimal processing parameters in filament winding[C]/ / International Sampe Technical Conference. 2001,38:1084-1095.
[18] JIAO Z B,YAO Z J,ZHOU J T,et al. Reinforced interface and mechanical properties of high strength carbon fiber composites[J]. High Performance Polymers,2021,33(3):255-263.
[19] AIZED T,SHIRINZADEH B. Robotic fiber placement process analysis and optimization using response surface method[J]. International Journal of Advanced Manufacturing Technology,2011,55(1-4):393-404.
[20] POLINI W,SORRENTINO L. Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts[J]. Composites Science and Technology,2005,65(10):1574-1581.
[21] 史耀耀,俞涛,何晓东,等. 复合材料带缠绕成型工艺参数耦合机制及优化[J]. 复合材料学报,2015,32(3):831-839. SHI Yaoyao,YU Tao,HE Xiaodong,et al. Mechanism and optimization of process para-meters coupling for composite tape winding[J]. Acta Materiae Compositae Sinica,2015,32(3):831-839.
[22] 洪旗,史耀耀,路丹妮,等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报,2019,36(12):2822-2832. HONG Qi,SHI Yaoyao,LU Danni,et al. Multi-response parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology[J]. Acta Materiae Compositae Sinica,2019,36(12):2822-2832.
[23] 曹学文. 碳纤维复合材料缠绕成型工艺参数影响规律及优化研究[D]. 合肥:合肥工业大学,2022. CAO Xuewen. Research on the influence and optimization of winding molding process parameters of carbon fiber composite materials.[D]. Hefei:Hefei University of Technology,2022.
[24] REN Shengle,LU Hua,WANG Yongzhang ,et al. Development of PLC-based tension control system[J]. Chinese Journal of Aeronautics,2007,20(3):266-271.
[25] WU Q,ZU L,WANG P,et al. Design and fabrication of carbon-fiber-wound composite pressure vessel with HDPE liner[J]. International Journal of Pressure Vessels and Piping,2022,200:104851.
[26] 黎昱,林大庆,陈维强,等. 湿法缠绕树脂的应用研究[J]. 宇航材料工艺,2009,39(4):22-25. LI Yu,LIN Daqing,CHEN Weiqiang,et al. Application of wet winding resin[J]. Aerospace Materials and Technology. 2009,39(4):22-25.
[27] 中国国家标准化管理委员会. 纤维缠绕增强塑料环形试样力学性能试验方法[S]. 北京:中国标准出版社,2008. Standardization Administration of the People’s Republic of China. Test method for mechanical properties of filament wound reinforced plastics annular specimens:GB/T 1458-2008[S]. Beijing:Standards Press of China,2008.
[28] 何晓东,史耀耀,段继豪,等. 复合材料布带缠绕成型柔性压辊自适应偏航控制技术[J]. 机械工程学报,2014,50(17):165-170. HE Xiaodong,SHI Yaoyao,DUAN Jihao,et al. Adaptive yaw control of the flexible pressure roller for composite tape winding[J]. Journal of Mechanical Engineering,2014,50(17):165-170.
[29] 胡春幸,侯玉亮,铁瑛,等. 不同胶接参数对CFRP层合板单搭胶接结构强度的影响及优化设计[J]. 机械工程学报,2021,57(8):154-165. HU Chunxing,HOU Yuliang,TIE Ying,et al. Influence of different bonding parameters on the strength of CFRP laminates with single lap bonding structure and optimization[J]. Journal of Mechanical Engineering,2021,57(8):154-165.
[30] 中国国家标准化管理委员会. 碳纤维增强塑料孔隙含量和纤维体积含量试验方法:GB/T 3365-2008[S]. 北京:中国标准出版社,2008. Standardization Administration of the People’s Republic of China. Carbon fiber reinforced platics determination of void content and fiber volume content:GB/T 3365-2008[S]. Beijing:Standards Press of China,2008.
[31] LIU Y,CHAI J C,CUI X,et al. Multi-objective optimization of air dehumidification membrane module based on response surface method and genetic algorithm[J]. Energy Reports,2023,9:2201-2212.
[32] CONG M,ZHANG S,SUN D,et al. Optimization of preparation of foamed concrete based on orthogonal experiment and range analysis[J]. Frontiers in Materials,2021,8:778173.
[33] AKKAYA G K,ERKAN H S,SEKMAN E,et al. Modeling and optimizing Fenton and electro-Fenton processes for dairy wastewater treatment using response surface methodology[J]. International Journal of Environmental Science and Technology,2019,16(5):2343-2358.
[34] BAI H,SHI L,AOUES Y,et al. Estimation of probability distribution of long-term fatigue damage on wind turbine tower using residual neural network[J]. Mechanical Systems and Signal Processing,2023,190:110101.
PDF(527 KB)

22

Accesses

0

Citation

Detail

Sections
Recommended

/