坡口形式对双金属复合板多层多道焊接头残余应力演变的影响

朱敏, 郑乔, 吴巍, 钱伟方, 夏立乾, 张延松, 王宝森

机械工程学报 ›› 2022, Vol. 58 ›› Issue (10) : 51-58.

PDF(550 KB)
PDF(550 KB)
机械工程学报 ›› 2022, Vol. 58 ›› Issue (10) : 51-58. DOI: 10.3901/JME.2022.10.051
材料科学与工程

坡口形式对双金属复合板多层多道焊接头残余应力演变的影响

  • 朱敏1, 郑乔2, 吴巍2, 钱伟方2, 夏立乾2, 张延松1, 王宝森2
作者信息 +

Study of Influences of Groove Type on Welding Residual Stress Evolution in Bimetallic Clad Plate Joints during Multi-layer and Multi-pass Welding

  • ZHU Min1, ZHENG Qiao2, WU Wei2, QIAN Weifang2, XIA Liqian2, ZHANG Yansong1, WANG Baosen2
Author information +
文章历史 +

摘要

采用TIG焊制备了13 mm厚Incoloy825/X52双金属复合板的对接接头,采用数值模拟与试验手段相结合的方法,分析了不同坡口形式对复合板接头焊接残余应力分布的影响,揭示了双金属复合板多层多道焊过程中残余应力的演变特征。结果表明:对于双金属复合板而言,复合型及V型坡口接头内部最高应力集中区域均位于过渡层内,沿水平方向呈现长条状分布,坡口形式的变化对于接头内部和表面应力的分布特征及峰值没有明显影响;从残余应力的产生和演变过程来看,只有当复合板接头的基层、过渡层和复层都焊接完成后,过渡层内才会产生最高应力集中区域;此外,最终焊道对复合板接头的应力分布起着决定性作用,会对最终应力状态产生很强的牵引作用,使其呈现偏离试板中心线的不对称分布。

Abstract

The 13 mm-thick Incoloy825/X52 bimetallic clad plates were prepared by TIG welding. Both finite element method and experimental means were conduct to study the residual stress distribution characteristics during multi-layer and multi-pass welding of plates with different groove types. The results show that for the bimetallic composite plate, the highest stress concentration area is always located at transition seam layer with a long strip distribution profile no matter which type of groove is applied. The changes of groove types have limited effects on the profile and peak value of both internal and surficial high residual stress region. The evolution of residual stress inside the joints shows that the highest stress concentration region in transition layer will not generate until all base, transition and flyer seam layers welding are finished. Besides, the final weld plays a decisive role in the formation of final residual stress state. It will have a strong “pulling” effect on residual stress distribution and make the final stress distribute asymmetrically.

关键词

双金属复合板 / 有限元 / 坡口形式 / 残余应力

Key words

bimetallic clad plate / finite element / groove type / residual stress

引用本文

导出引用
朱敏, 郑乔, 吴巍, 钱伟方, 夏立乾, 张延松, 王宝森. 坡口形式对双金属复合板多层多道焊接头残余应力演变的影响[J]. 机械工程学报, 2022, 58(10): 51-58 https://doi.org/10.3901/JME.2022.10.051
ZHU Min, ZHENG Qiao, WU Wei, QIAN Weifang, XIA Liqian, ZHANG Yansong, WANG Baosen. Study of Influences of Groove Type on Welding Residual Stress Evolution in Bimetallic Clad Plate Joints during Multi-layer and Multi-pass Welding[J]. Journal of Mechanical Engineering, 2022, 58(10): 51-58 https://doi.org/10.3901/JME.2022.10.051

参考文献

[1] GOU Ningnan, ZHANG Jianxun, WANG Jiandong, et al. Butt welding of 2205/X52 bimetallic sheet and study on the inhomogeneity of the properties of the welded joint[J]. Journal of Materials Engineering and Performance, 2017, 26(4):1801-1807.
[2] 黄华贵,赵阳,王超,等.界面涂层对厚规格热轧钢/铝复合板界面结构与力学性能的影响[J].机械工程学报, 2019, 55(14):30-35. HUANG Huagui, ZHAO Yang, WANG Chao, et al. Influence of plasma spraying on interfacial microstructure and mechanical property of thick steel/aluminum laminated plate by hot rolling[J]. Journal of Mechanical Engineering, 2019, 55(14):30-35.
[3] GOU Ningnan, ZHANG Linjie, ZHANG Jianxun. Increased quality and welding efficiency of laser butt welding of 2205/X65 bimetallic sheets with a lagging MIG arc[J]. Journal of Materials Processing Technology, 2018, 251:83-92.
[4] KANG Kai, KAWAHITO Yosuke, GAO Ming, et al. Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate[J]. Materials&Design, 2017, 123:80-88.
[5] MENG Yunfei, KANG Kai, GAO Ming, et al. Microstructures and properties of single-pass laser-arc hybrid welded stainless clad steel plate[J]. Journal of Manufacturing Processes, 2018, 36:293-300.
[6] LI Liying, XIAO Jun, HAN Bin, et al. Microstructure and mechanical properties of welded joints of L415/316L bimetal composite pipe using post internal-welding process[J]. International Journal of Pressure Vessels and Piping, 2020:179.
[7] JIANG Wenchun, LIU Zibai, GONG J M, et al. Numerical simulation to study the effect of repair width on residual stresses of a stainless steel clad plate[J]. International Journal of Pressure Vessels&Piping, 2010, 87(8):457-463.
[8] JIANG Wenchun, WANG Binying, GONG J M, et al. Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds for a stainless steel clad plate[J]. Materials&Design, 2011, 32(5):2851-2857.
[9] KELLER S, HORSTMANN M, KASHAEV N, et al. Experimentally validated multi-step simulation sequence to predict the fatigue crack propagation rate in residual stress fields after laser shock peening[J]. International Journal of Fatigue, 2019, 124(7):265-276.
[10] GORDON J V, HADEN C V, NIED H F, et al. Fatigue crack growth anisotropy, texture and residual stress in austenitic steel made by wire and arc additive manufacturing[J]. Materials Science&Engineering A, 2018, 724:431-438.
[11] ZHU Ruolin, WANG Jianqiu, ZHANG Zhiming, et al. Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water[J]. Corrosion Science, 2017, 120:219-230.
[12] HOU Juan, PENG Qunjia, TAKEDA Y, et al. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint[J]. Corrosion Science, 2010, 52(12):3949-3954.
[13] GIRI A, MAHAPATRA M M, SHARMA K, et al. A study on the effect of weld groove designs on residual stresses in SS 304LN thick multipass pipe welds[J]. International Journal of Steel Structures, 2017, 17:65-75.
[14] LIU Chuan, ZHANG Jianxun, XUE C. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes[J]. Fusion Engineering&Design, 2011, 86(4-5):288-295.
[15] 蔡建鹏,蒋小华,张彦杰,等.坡口形式对SUS304奥氏体不锈钢对接接头残余应力和变形的影响[J].焊接学报, 2016, 37(2):63-66. CAI Jianpeng, JIANG Xiaohua, ZHANG Yanjie, et al. Influence of groove type on residual stress and distortion in SUS304 austenitic stainless steel butt weld[J]. Transactions of the China Welding Institution, 2016, 37(2):63-66.
[16] 蔡建鹏,叶延洪,张彦杰,等.坡口形式对Q345/SUS304异种钢对接接头残余应力和变形的影响[J].机械工程学报, 2015, 51(10):55-61. CAI Jianpeng, YE Yanhong, ZHANG Yanjie, et al. Study on influences of groove type on welding residual stress and deformation in Q345/SUS304 dissimilar steel butt-welded joints[J]. Journal of Mechanical Engineering, 2015, 51(10):55-61.
[17] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 13148-2008不锈钢复合钢板焊接技术要求[S].北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 13148-2008 Specification for welding of stainless steel clad plates[S]. Beijing:Standards Press of China, 2008.
[18] WANG Shaogang, DONG Guiping, MA Qihui. Welding of duplex stainless steel composite plate:Influence on microstructural development[J]. Advanced Manufacturing Processes, 2009, 24(12):1383-1388.
[19] DENG Dean, MURAKAWA H. Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel[J]. Computational Materials Science, 2013, 78:55-62.
[20] E837-08e2, A. Standard test method for determining residual stresses by the hole-drilling strain-gage method[S]. West Conshohocken:ASTM International, 2009.
[21] REN Sendong, LI Suo, WANG Yifeng, et al. Predicting welding residual stress of a multi-pass P92 steel butt-welded joint with consideration of phase transformation and tempering effect[J]. Journal of Materials Engineering and Performance, 2019, 28(12):7452-7463.
[22] POVOLO F, BOLMARO R. Poisson's ratio of metals and alloys[J]. Strength of Metals and Alloys (ICSMA 7), 1985:287-292.
[23] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B:Process Metallurgy, 1984, 15(2):299-305.
[24] DENG Dean, KIVOSHIMA S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint[J]. Acta Metallurgica Sinca, 2014, 50(5):626-632.
[25] HU Xiaodong, YANG Yicheng, SONG Ming. Experimental and numerical investigations on the thermomechanical behavior of 304 stainless steel/Q345R composite plate weld joint[J]. Materials, 2019, 12(21):3489.
[26] LI Suo, REN Sendong, ZHANG Yanbin, et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J]. Journal of Materials Processing and Technology, 2017, 244:240-252.
[27] RONG Youmin, XU Jiajun, HUANG Yu, et al. Review on finite element analysis of welding deformation and residual stress[J]. Science and Technology of Welding and Joining, 2018, 23(3):198-208.
[28] LUO Yu. Description of inherent strain and its application to prediction of welding deformation and residual stress under multi-pass welding[D]. Osaka:Osaka University, 1997.
PDF(550 KB)

316

Accesses

0

Citation

Detail

段落导航
相关文章

/