大型复材薄壁构件工业机器人高精度原位铣边加工新方法

田威, 李鹏程, 缪云飞, 廖文和, 董松, 孟丹

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7) : 120-133.

PDF(837 KB)
PDF(837 KB)
机械工程学报 ›› 2025, Vol. 61 ›› Issue (7) : 120-133. DOI: 10.3901/JME.2025.07.120
特邀专栏:先进纤维增强复合材料加工

大型复材薄壁构件工业机器人高精度原位铣边加工新方法

  • 田威1, 李鹏程1, 缪云飞1, 廖文和2, 董松2, 孟丹2
作者信息 +

A New Method for High-precision In-situ Milling Edge Processing of Industrial Robots for Large Composite Thin-walled Components

  • TIAN Wei1, LI Pengcheng1, MIAO Yunfei1, LIAO Wenhe2, DONG Song2, MENG Dan2
Author information +
文章历史 +

摘要

针对大型复合材料薄壁件刚性弱、切削精度难以保障,以及仿形工装设计制造周期长、加工成本高等问题,提出了一种基于可重构柔性工装的大型复材薄壁构件机器人高精度原位铣边加工新方法。设计了一套面向大型复材构件的机器人铣边加工系统,首先,针对大型复材构件空间曲线的轨迹跟踪问题,结合双目视觉测量系统,研究了基于视觉引导的机器人轨迹精度补偿算法,并进行高精度伺服控制律设计,实现机器人高精度轨迹跟踪控制;在此基础上,开展了大型薄壁构件和柔性工装的一体化动力学建模方法研究,提出了基于智能优化算法的柔性工装最佳支撑布局策略,提高大型复杂薄壁构件的支撑刚性;进一步地,设计了超声加工刀具,探究了超声振动铣削加工工艺。最后,通过实验验证,有效地降低了工业机器人的加工振动和轨迹误差,实现了机器人对大型复合材料薄壁件的高精加工。

Abstract

Addressing the challenges of weak rigidity and difficulty in ensuring cutting accuracy of large composite thin-walled components, as well as long design and manufacturing cycles and high processing costs of profiling tooling, a new method for high-precision in-situ milling edge processing of large composite thin-walled components using reconfigurable flexible tooling is proposed. This studg designs a robotic milling system for large composite components. Firstly, for the trajectory tracking problem of large composite components’ spatial curves, a vision-guided robot trajectory accuracy compensation algorithm is studied in combination with a binocular vision measurement system, and a high-precision servo control law is designed to achieve high-precision trajectory tracking control of the robot. Then an dynamics modeling method for large thin-walled components and flexible tooling is studied, and an optimal support layout strategy for flexible tooling based on intelligent optimization algorithm is proposed to improve the support rigidity of large complex thin-walled components. Further, an ultrasonic machining tool is designed and ultrasonic vibration milling processing technology is studied. Finally, through test verification, the processing vibration and trajectory errors of industrial robots are effectively reduced, and high-precision machining of large composite thin-walled components by robots is achieved.

关键词

工业机器人 / 大型复材 / 铣边加工 / 视觉引导 / 动力学建模 / 超声振动切削

Key words

industrial robot / large composite / milling edge / visual guidance / dynamics modeling / ultrasonic vibration cutting

引用本文

导出引用
田威, 李鹏程, 缪云飞, 廖文和, 董松, 孟丹. 大型复材薄壁构件工业机器人高精度原位铣边加工新方法[J]. 机械工程学报, 2025, 61(7): 120-133 https://doi.org/10.3901/JME.2025.07.120
TIAN Wei, LI Pengcheng, MIAO Yunfei, LIAO Wenhe, DONG Song, MENG Dan. A New Method for High-precision In-situ Milling Edge Processing of Industrial Robots for Large Composite Thin-walled Components[J]. Journal of Mechanical Engineering, 2025, 61(7): 120-133 https://doi.org/10.3901/JME.2025.07.120

参考文献

[1] 王亮,李东升. 飞机数字化装配柔性工装技术体系研究[J]. 航空制造技术,2012(7):34-39. WANG Liang,LI Dongsheng. Flexible tooling technology system for aircraft digital assembly[J]. Aeronautical Manufacturing Technology,2012(7):34-39.
[2] SCHWAKE K,WULFSBERG J. Robot-based system for handling of aircraft shell parts[J]. Procedia CIRP,2014,23:104-109.
[3] SHUANG M,LIANYU Z,WEI F,et al. Intelligent layout optimization of reconfigurable flexible fixture for assembling multiple aircraft panels[J]. The International Journal of Advanced Manufacturing Technology,2023,126(3-4):1261-1278.
[4] GUO F,WANG Z,KANG Y,et al. Positioning method and assembly precision for aircraft wing skin[J]. Proceedings of the Institution of Mechanical Engineers,2018,232(2):317-327.
[5] HU F,LI D. Process planning and simulation strategies for perimeter milling of thin-walled flexible parts held by reconfigurable fixturing system[C]// Third International Conference on Measuring Technology and Mechatronics Automation. IEEE,2011,2:922-926.
[6] 郭飞燕,王仲奇,康永刚,等. 飞机柔性装配工装设计[J]. 航空制造技术,2014(16):12-16. GUO Feiyan,WANG Zhongqi,KANG Yonggang,et al. Design of the flexible assembly tooling for aircraft[J]. Aeronautical Manufacturing Technology,2014(16):12-16.
[7] GHARAATY S,SHU T,XIE W F,et al. Accuracy enhancement of industrial robots by on-line pose correction[C]// Proceedings of the Asia-pacific Conference on Intelligent Robot Systems,2017:214-220.
[8] 曲巍崴,董辉跃,柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报,2011,32(10):1951-1960. QU Weiwei,DONG Huiyue,KE Yinglin. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica ET Astronautica Sinica,2011,32(10):1951-1960.
[9] 史晓佳,张福民,曲兴华,等. Kuka工业机器人位姿测量与在线误差补偿[J]. 机械工程学报,2017,53(8):1-7. SHI Xiaojia,ZHANG Fumin,QU Xinghua,et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. Journal of Mechanical Engineering,2017,53(8):1-7.
[10] 储婷婷. 基于多轴耦合同步控制的机器人高精度轨迹跟踪方法研究[D]. 哈尔滨: 哈尔滨工业大学,2015. CHU Tingting. Research on robotic high precision tracking based on multiaxial coupling synchronized control [D]. Harbin:Harbin Institute of Technology,2015
[11] YOUCEF-TOUMI K,LIU W S,ASADA H. Computer- aided analysis of reconfigurable fixtures and sheet metal parts for robotic drilling[J]. Robotics & Computer Integrated Manufacturing,1988,4(3-4):387-393.
[12] 王运巧,梅中义,范玉青. 薄壁弧形件装夹布局有限元优化[J]. 机械工程学报,2005,41(6):214-217,223. WANG Yunqiao,MEI Zhongyi,FAN Yuqing,Finite element optimization of machining fixture layout of thin-walled arc workpiece[J]. Journal of Mechanical Engineering,2005,41(6):214-217,223.
[13] PRABHAHARAN G,PADMANABAN K P,KRISHNAKUMAR R. Machining fixture layout optimization using FEM and evolutionary techniques[J]. The International Journal of Advanced Manufacturing Technology,2007,32(11/12):1090-1103.
[14] 秦国华,吴竹溪,张卫红. 薄壁件的装夹变形机理分析与控制技术[J]. 机械工程学报,2007,43(4):211-216,223. QIN GuoHua,WU Zhuxi,ZHANG Weihong. Analysis and control technique of fixturing deformation mechanism of thin-walled workpiece[J]. Journal of Mechanical Engineering,2007,43(4):211-216,223.
[15] KULANKARA K,MELKOTE S N. Machining fixture layout optimization using the genetical algorithm[J]. International Journal of Machine Tools & Manufacture,2000,40(4):579-598.
[16] LI B,MELKOTE S N. Fixture clamping force optimization and its impact on workpiece loacation accuracy[J]. Manufacturing Technology,2001,17:104-113.
[17] SUBRAMANIAN V,EDWARD C,De METER,et al. An investigation of effectiveness of fixture layout optimization methods [J]. International Journal of Machine Tools & Manufacture,2002,42:251-263.
[18] KAYA N. Machining fixture locating and clamping position optimization using genetic algorithms[J]. Computers in Industry,2006,57(2):112-120.
[19] PADMANA K P,ARULSHRI K P. PRABHAKARAN G. Machining fixture layout design using ant colony algorithm based continuous optimization method[J]. The International Journal of Advanced Manufacturing Technology,2009,45(9/10):922-934.
[20] SUNDARARAMAN K A,GUHARAJA S,PADMANABAN K P,et al. Design and optimization of machining fixture layout for end-milling operation[J]. The International Journal of Advanced Manufacturing Technology,2014,73(5/8):669-679.
[21] HAO Jiaxuan,WANG Fuji,ZHAO Meng,et al. Drill bit with clip-edges based on the force control model for reducing the CFRP damage[J]. Journal of Reinforced Plastics and Composites,2021,40(5-6):206-219.
[22] JIA Zhenyuan,FU Rao,NIU Bin,et al. Novel drill structure for damage reduction in drilling CFRP composites[J]. International Journal of Machine Tools and Manufacture,2016,110:55-65.
[23] 贾振元,付饶,王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报,2023,59(19):348-374. JIA Zhenyuan,FU Rao,WANG Fuji. Research advance review of machining technology for carbon fiber reinforced polymer composite components[J]. Journal of Mechanical Engineering,2023,59(19):348-374.
[24] 贾振元,毕广健,王福吉,等. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报,2018,54(23):199-208. JIA Zhenyuan,BI Guangjian,WANG Fuji,et al. The research of machining mechanism of carbon fiber reinforced plastic[J]. Journal of Mechanical Engineering,2018,54(23):199-208.
[25] FENG Pingfa,WANG Jianjian,ZHANG Jianfu,et al. Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites[J]. Ceramics International,2017,43(1):791-799.
[26] LIU Yang,LIU Zhibing,WANG Xibin,et al. Experimental study on tool wear in ultrasonic vibration- assisted milling of C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology,2020,107(1-2):425-436.
[27] GENG Daxi ,ZHANG Deyuan,XU Yonggang,et al. Rotary ultrasonic elliptical machining for side milling of CFRP:tool performance and surface integrity[J]. Ultrasonics,2015,59:128-137.
[28] RUI Xue,BESTLE D. Reduced multibody system transfer matrix method using decoupled hinge equations[J]. International Journal of Mechanical System Dynamics,2021(002):001.
[29] RUI Xiaoting,ZHANG Jianshu,WANG Xun,et al. Multibody system transfer matrix method:The past,the present,and the future[J]. International Journal of Mechanical System Dynamics,2022,1(1):002.
[30] RUI Xiaoting,WANG Xun,ZHOU Qinbo,et al. Transfer matrix method for multibody systems (Rui method) and its applications[J]. Science China Technological Science,2019,62(5):712-720.
PDF(837 KB)

19

Accesses

0

Citation

Detail

段落导航
相关文章

/