面向动态不确定场景的自动驾驶车辆时空耦合分层轨迹规划研究

周洪龙, 裴晓飞, 刘一平, 赵柯帆

机械工程学报 ›› 2024, Vol. 60 ›› Issue (10) : 222-234.

PDF(717 KB)
PDF(717 KB)
机械工程学报 ›› 2024, Vol. 60 ›› Issue (10) : 222-234. DOI: 10.3901/JME.2024.10.222
智能决策规划

面向动态不确定场景的自动驾驶车辆时空耦合分层轨迹规划研究

  • 周洪龙1, 裴晓飞1, 刘一平1, 赵柯帆2
作者信息 +

Study on Spatio-temporal Coupled Hierarchical Trajectory Planning of Autonomous Vehicles for Dynamic Uncertain Scenarios

  • ZHOU Honglong1, PEI Xiaofei1, LIU Yiping1, ZHAO Kefan2
Author information +
文章历史 +

摘要

针对智能车辆在结构化道路上,处理动态复杂场景能力较弱以及实时性差的问题,基于可达集的方法设计一种分层式时空耦合的轨迹规划方法,完成车辆在动态不确定场景下的轨迹规划。首先,根据自车与周围的障碍物状态信息,预测障碍物在未来一段时间内的位置分布概率,基于可达集的方法计算各时刻的可达区域,得到最优行驶走廊及一条初始轨迹。其次,利用二次规划的方法在最优行驶走廊内根据初始轨迹进行优化,求解出一条平滑轨迹,并对该轨迹进行跟踪行驶。最后,利用PreScan、CarSim和Matlab软件搭建仿真平台,在动态复杂交通场景下进行仿真分析,并在实车平台上进行避障测试。结果表明,所设计的规划方法能够有效处理动态不确定场景,在保证安全性的前提下能够规划出高效的通行轨迹,同时也能兼顾预测准确度与实时性。

Abstract

In order to solve the problem of weak ability of intelligent vehicles to handle dynamic complex scenes and poor real-time performance on structured roads, a hierarchical spatio-temporal coupled trajectory planning method is designed based on the reachable set method to complete the vehicle’s dynamic uncertainty scenarios trajectory planning. Firstly, based on the status information of the vehicle and surrounding obstacles, the location distribution probability of obstacles in the future is predicted, and the reachable area at each time is calculated based on the reachable set method, and the optimal driving corridor and an initial trajectory are obtained. Secondly, the quadratic programming method is used to optimize the initial trajectory within the optimal driving corridor, and a smooth trajectory is obtained, and the trajectory is tracked. Finally, a simulation platform is built using PreScan, CarSim and Matlab software, simulation analysis is conducted under dynamic and complex traffic scenarios, and obstacle avoidance testing is conducted on the real vehicle platform. The results show that the designed planning method can effectively handle dynamic uncertain scenarios, plan efficient traffic trajectories while ensuring safety, and can also take into account prediction accuracy and real-time performance.

关键词

自动驾驶 / 轨迹预测 / 可达集 / 轨迹规划

Key words

autonomous driving / trajectory prediction / reachable set / trajectory planning

引用本文

导出引用
周洪龙, 裴晓飞, 刘一平, 赵柯帆. 面向动态不确定场景的自动驾驶车辆时空耦合分层轨迹规划研究[J]. 机械工程学报, 2024, 60(10): 222-234 https://doi.org/10.3901/JME.2024.10.222
ZHOU Honglong, PEI Xiaofei, LIU Yiping, ZHAO Kefan. Study on Spatio-temporal Coupled Hierarchical Trajectory Planning of Autonomous Vehicles for Dynamic Uncertain Scenarios[J]. Journal of Mechanical Engineering, 2024, 60(10): 222-234 https://doi.org/10.3901/JME.2024.10.222

参考文献

[1] 刘梓林,黎予生,郑玲. 基于非结构化环境点云稀疏表示的无人驾驶汽车局部路径规划方法[J]. 机械工程学报,2020,56(2):163-173. LIU Zilin,LI Yusheng,ZHENG Ling. Local path planning for autonomous vehicles based on sparse representation of point cloud in unstructured environments[J]. Journal of Mechanical Engineering,2020,56(2):163-173.
[2] 彭晓燕,谢浩,黄晶. 无人驾驶汽车局部路径规划算法研究[J]. 汽车工程,2020,42(1):1-10. PENG Xiaoyan,XIE Hao,HUANG Jing. Research on local path planning algorithm for unmanned vehicles[J]. Automotive Engineering,2020,42(1):1-10.
[3] YANG B,YAN S,WANG Z,et al. Prediction based trajectory planning for safe interactions between autonomous vehicles and moving pedestrians in shared spaces[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(10):10513-10524.
[4] ZHANG X,WANG B,LU Y,et al. A hierarchical multi-vehicle coordinated motion planning method based on interactive spatio-temporal corridors[J]. IEEE Transactions on Intelligent Vehicles,2023,9(1):2675-2687.
[5] BRANNSTROM M,COELINGH E,SJOBERG J. Model-based threat assessment for avoiding arbitrary vehicle collisions[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3):658-669.
[6] KIM H,KIM G,PARK J,et al. Action conditioned response prediction with uncertainty for automated vehicles[C]//2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),Taipei,Taiwan:IEEE,2019:1-2.
[7] ALTCHE F,DE LA FORTELLE A. An LSTM network for highway trajectory prediction[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York:IEEE,2017:353-359.
[8] GONZALEZ D,PEREZ J,MILANES V,et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2015,17(4):1135-1145.
[9] WANG Z,ZLANTANOVA S,OOSTEROM P V. Path planning for first responders in the presence of moving obstacles with uncertain boundaries[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(8):2163-2173.
[10] 张家旭,王欣志,赵健,等. 汽车高速换道避让路径规划及离散滑模跟踪控制[J]. 吉林大学学报(工学版),2021,51(3):1081-1090. ZHANG Jiaxu,WANG Xinzhi,ZHAO Jian,et al. Path planning and discrete sliding mode tracking control for high⁃speed lane changing collision avoidance of vehicle[J]. Journal of Jilin University (Engineering and Technology Edition),2021,51(3):1081-1090.
[11] PATRICK S,THEODOR M H,MAXIMILIAN K,et al. Sequential convex programming methods for real-time optimal trajectory planning in autonomous vehicle racing[J]. IEEE Transactions on Intelligent Vehicles,2023,8(1):661-672.
[12] XIN L,KONG Y,LI S E,et al. Enable faster and smoother spatio-temporal trajectory planning for autonomous vehicles in constrained dynamic environment[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2021,235(4):1101-1112.
[13] MAHDI M,ERIK F,JAN A. Spatio-temporal planning in multi-vehicle scenarios for autonomous vehicle using support vector machines[J]. IEEE Transactions on Intelligent Vehicles,2021,6(4):611-621.
[14] MANZINGER S,PEK C,ALTHOFF M. Using reachable sets for trajectory planning of automated vehicles[J]. IEEE Transactions on Intelligent Vehicles,2021,6(2):232-248.
[15] SONTGES S,ALTHOFF M. Computing the drivable area of autonomous road vehicles in dynamic road scenes[J]. IEEE Transactions on Intelligent Transportation Systems,2018,19(6):1855-1866.
[16] 周兴珍,裴晓飞,张鑫康. 基于可达集优化的智能汽车轨迹规划研究[J]. 武汉理工大学学报,2022,44(6):39-48. ZHOU Xingzhen,PEI Xiaofei,ZHANG Xinkang. Trajectory planning of intelligent vehicle based on reachable set and optimization[J]. Journal of Wuhan University of Technology,2022,44(6):39-48.
[17] ZHANG Y,SUN H,ZHOU J,et al. Optimal vehicle path planning using quadratic optimization for baidu apollo open platform[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas:IEEE,2020:978-984.
PDF(717 KB)

294

Accesses

0

Citation

Detail

段落导航
相关文章

/