非道路移动装备高能效电驱液传技术新进展

权龙, 闫志鑫, 章硕峰, 杨雨鑫, 葛磊, 李泽鹏

机械工程学报 ›› 2023, Vol. 59 ›› Issue (20) : 385-400.

PDF(896 KB)
PDF(896 KB)
机械工程学报 ›› 2023, Vol. 59 ›› Issue (20) : 385-400. DOI: 10.3901/JME.2023.20.385
交叉与前沿

非道路移动装备高能效电驱液传技术新进展

  • 权龙, 闫志鑫, 章硕峰, 杨雨鑫, 葛磊, 李泽鹏
作者信息 +

New Progress in Energy-efficient Electrical Drive and Hydraulic Transmission Technologies for Non-road Mobile Equipment

  • QUAN Long, YAN Zhixin, ZHANG Shuofeng, YANG Yuxin, GE Lei, LI Zepeng
Author information +
文章历史 +

摘要

双碳背景下,电驱动方式成为有效解决非道路移动装备碳排放与能源浪费问题的重要途径。然而,目前的电驱方式仅仅是用电池和电动机取代了内燃机,液压系统仍沿用集中式动力源供能、多路阀分配动力的阀控方式,存在系统能量转换、传递效率低的不足,需要大容量的电池组满足工作时长的需求,导致成本高,制约其推广应用。因此,提升液压系统的能效成为破解非道路移动装备电动化技术瓶颈的关键所在。对数字变排量泵技术、离散数字液压阀技术、浮杯泵技术,国际上三种显著提升液压系统能效的方法、研究进展、应用效果进行了分析和论述。进一步对团队所提出的电气液压双动力驱动重载直线执行器的工作原理、能效特性和应用效果进行介绍,所介绍的四种新型传动方式和现有技术对比,普遍可提高能效50%以上,为电动化非道路移动装备的推广应用奠定了基础。

Abstract

Under the dual-carbon background, electric drive becomes an important way to solve the problem of carbon emission and energy waste of non-road mobile equipment. However, the current first-generation electric drive machine only replaces the combustion engine with batteries and motors. Hydraulic system is still using the valve control mode that centralized power supply energy, multi-way valve distributes the power. The existing technology has the disadvantages of system energy conversion and low transfer efficiency. Need to use a large capacity battery to meet the needs of the machine working hours, which also leads to the high cost of the machine, restricting its application. Therefore, improving the energy efficiency of hydraulic system becomes the key to break the bottleneck of electrification technology of non-road mobile equipment. This paper analyzes and discusses the latest international methods, research progress and application effect of digital variable displacement pump, discrete digital hydraulic valve and floating cup pump which can significantly improve the energy efficiency of hydraulic system. Finally, the working principle, energy efficiency characteristics and application results of the teams proposed electric-hydraulic dual-drive heavy-duty linear actuator are introduced. Compared with the existing technology, the four new transmission modes can increase the energy efficiency of the system by more than 50%, which lays a foundation for the popularization and application of the electric non-road mobile equipment.

关键词

数字变排量泵 / 离散数字液压阀 / 浮杯泵 / 电气液压双动力驱动

Key words

digital variable displacement pump / discrete digital hydraulic valve / floating cup pump / electric-hydraulic dual-drive

引用本文

导出引用
权龙, 闫志鑫, 章硕峰, 杨雨鑫, 葛磊, 李泽鹏. 非道路移动装备高能效电驱液传技术新进展[J]. 机械工程学报, 2023, 59(20): 385-400 https://doi.org/10.3901/JME.2023.20.385
QUAN Long, YAN Zhixin, ZHANG Shuofeng, YANG Yuxin, GE Lei, LI Zepeng. New Progress in Energy-efficient Electrical Drive and Hydraulic Transmission Technologies for Non-road Mobile Equipment[J]. Journal of Mechanical Engineering, 2023, 59(20): 385-400 https://doi.org/10.3901/JME.2023.20.385

参考文献

[1] VUKOVIC M,LEIFELD R,MURRENHOFF H. Reducing fuel consumption in hydraulic excavators-A comprehensive analysis[J]. Energies,2017,10(5):687.
[2] RAMPEN W H S. The digital displacement hydraulic piston pump[D]. Edinburgh:University of Edinburgh,1992.
[3] SALTER S H,RAMPEN W H S. Fluid-working machine:US,5259738[P]. 1993-11-09.
[4] CALDWELL N J. Digital displacement hydrostatic transmission systems[D]. Edinburgh:University of Edinburgh,2007.
[5] GREEN M,MACPHERSON J,CALDWELL N,et al. DEXTER:The application of a digital displacement® pump to a 16 tonne excavator[C]//Proceedings of the 2018 Bath/ASME Symposium on Fluid Power and Motion Control. ASME,2018:1-9.
[6] NØRGÅRD C. Design,optimization and testing of valves for digital displacement machines[D]: Aalborg:Aalborg University,2017.
[7] RAMPEN W,STEIN U,BERNHARD P,et al. Electronically controlled valves:WO,2010/106361 A1[P]. 2010-09-23.
[8] KUTTLER O,LAIRD S,WADSLEY L. Fluid distribution valve:EP,20,080,020,083[P]. 2021-05-19.
[9] STEIN U. Fluid-working machine:US,12/440,371[P]. 2014-06-24.
[10] RAMPEN W,CALDWELL N,STEIN U. Annular valve:US,7077378[P]. 2002-07-18.
[11] NOGUCHI T,HIRANO H,KAWABATA S,et al. Poppet valve,hydraulic machine,and power generating apparatus of renewable-energy type:EP,20,150,197,211[P]. 2016-12-21.
[12] ROEMER D B,JOHANSEN P,PEDERSEN H C,et al. Topology selection and analysis of actuator for seat valves suitable for use in digital displacement pumps/motors[C]//2013 IEEE International Conference on Mechatronics and Automation. IEEE,2013:418-424.
[13] ROEMER D B,BECH M M,JOHANSEN P,et al. Optimum design of a moving coil actuator for fast-switching valves in digital hydraulic pumps and motors[J]. IEEE/ASME Transactions on Mechatronics,2015,20(6):2761-2770.
[14] MADSEN E L,JØRGENSEN J M T,NØRGÅRD C,et al. Design optimization of moving magnet actuated valves for digital displacement machines[C]//Proceedings of the ASME/BATH 2017 Symposium on Fluid Power and Motion Control. ASME,2017:1-12.
[15] MARSCHAND J R. Modeling,simulation,and design of a radial piston digital displacement unit [D]. Indiana:Purdue University,2018.
[16] DARNET J,BIDEAUX É. State-of-the-art of variable displacement technologies for radial piston hydraulic machines[C]//Proceedings of the BATH/ASME 2022 Symposium on Fluid Power and Motion Control. ASME,2022:1-11.
[17] MERRILL K J,BREIDI F Y,LUMKES JR J. Simulation based design and optimization of digital pump/motors[C] //Proceedings of the ASME/BATH 2013 Symposium on Fluid Power and Motion Control. ASME,2013:1-8.
[18] BREIDI F,GARRITY J,LUMKES JR J. Investigation of a real-time pressure based valve timing correction algorithm[C]//Proceedings of the ASME/BATH 2017 Symposium on Fluid Power and Motion Control. ASME,2017:1-11.
[19] YUE Daling,ZUO Xiukun,LIU Zengguang,et al. An adaptive control method for the distribution valve of a digital pump[J]. Machines,2023,11(2):148-162.
[20] DANFOSS. Digital-Displacement-Pumps [EB/OL]. [2023-07-10]. https://www.danfoss.com/zh-cn/products/dps/pumps/digital-displacement-pumps/digital-displacement-pumps/.
[21] LAGARDE J,GREEN M,DOLE A,et al. Danfoss digital displacement & editron:An efficient electro-hydraulic system for mobile applications[C]//Proceedings of the 13th International Fluid Power Conference. IFK,2022:1045-1058.
[22] HUTCHESON J,ABRAHAMS D,MACPHERSON J,et al. Demonstration of efficient energy recovery systems using digital displacement® hydraulics[C]//Proceedings of the BATH/ASME 2020 Symposium on Fluid Power and Motion Control. ASME,2020:1-9.
[23] HUTCHESON J,ABRAHAMS D,GREEN M,et al. Motion control of a hydraulic cylinder with a digital displacement pump-motor[C]//Proceedings of the 13th International Fluid Power Conference. IFK,2022:705-718.
[24] BUDDEN J J,WILLIAMSON C. Danfoss digital displacement® excavator:test results and analysis[C]//Proceedings of the ASME/BATH 2019 Symposium on Fluid Power and Motion Control. ASME,2019:1-10.
[25] PELLEGRI M,GREEN M,MACPHERSON J,et al. Applying a multi-service digital displacement® pump to an excavator to reduce valve losses[C]//Proceedings of the 12th International Fluid Power Conference. IFK,2020:59-68.
[26] MACPHERSON J,WILLIAMSON C,GREEN M,et al. Energy efficient excavator hydraulic systems with digital displacement® pump-motors and digital flow distribution[C]//Proceedings of the BATH/ASME 2020 Symposium on Fluid Power and Motion Control. ASME,2020:1-10.
[27] MARSHALL P,LAGARDE J,DOLE A,et al. Application of a digital displacement combined propel & work function transmission to off-highway machines- case study on a 4.5t forklift[C]//Proceedings of the 13th International Fluid Power Conference. IFK,2022:691-704.
[28] BOWER J L. Digital fluid control system US16838762A[P]. 1961-09-12.
[29] MURPHY J R E,PETER W J. Hydraulic control system:US,3038449[P]. 1962-06-12.
[30] TANAKA H. Electro-hydraulic PCM control[J]. The Journal of Fluid Control,1988,18(1):34-46.
[31] 刘荣. 广义脉码调制液压伺服控制的理论和应用研究[D]. 杭州:浙江大学,2003. LIU Rong. Theoretical and application researches on hydraulic servo control with generalized pulse code modulation[D]. Hangzhou:Zhejiang University,2003.
[32] LINJAMA M,KOSKINEN K T,VILENIUS M. Accurate trajectory tracking control of water hydraulic cylinder with non-ideal on/off valves[J]. International Journal of Fluid Power,2003,4(1):7-16.
[33] LAAMANEN A,LINJAMA M,TAMMISTO J,et al. Velocity control of water hydraulic motor[C]//Proceedings of the JFPS International Symposium on Fluid Power. The Japan Fluid Power System Society,2002:167-172.
[34] LINJAMA M,LAAMANEN M S A,VILENIUS M. Is it time for digital hydraulics?[C]//The Eighth Scandinavian International Conference on Fluid Power,Proceedings of the Conference,May 7-9,2003,Tampere,Finland. Tampere University of Technology,2003:347-366.
[35] 刘荣,王宣银.GPCM控制阀内流道流场仿真[J].农业机械学报,2005(4):72-74. LIU Rong,WANG Xuanyin. Simualtion study on flow field of gallery of GPCM control valve[J]. Transactions of the Chinese Society for Agricultural Machinery,2005(4):72-74.
[36] LINJAMA M,PALONIITTY M,TIAINEN L,et al. Mechatronic design of digital hydraulic micro valve package[J]. Procedia engineering,2015,106:97-107.
[37] LAAMANEN A,LINJAMA M,VILENIUS M. Pressure peak phenomenon in digital hydraulic systems-a theoretical study[C]//Proceedings of the Bath Workshop on Power Transmission and Motion Control (PTMC 2005). Centre for Power Transmission and Motion Control. 2005:91-104.
[38] HANSEN R H,ANDERSEN T O,PEDERSEN H C,et al. Control of a 420 KN discrete displacement cylinder drive for the wavestar wave energy converter[C]//Proceedings of the ASME/BATH 2014 Symposium on Fluid Power and Motion Control. ASME, 2014:1-10.
[39] LINJAMA M,SEPPÄLÄ J,MATTILA J,et al. Comparison of digital hydraulic and traditional servo system in demanding water hydraulic tracking control[C]//Fluid Power and Motion Control FPMC 2008,September 10-12,2008,Bath,UK. FPMC,2008:393-403.
[40] HUOVA M,PLÖCKINGER A. Improving resolution of digital hydraulic valve system by utilizing fast switching valves[C]//Proceedings of the Third Workshop on Digital Fluid Power,October 13-14. 2010,Tampere,Finland. Tampere University of Technology,2010:79-92.
[41] PALONIITTY M,LINJAMA M,HUHTALA K. Equal coded digital hydraulic valve system-improving tracking control with pulse frequency modulation[J]. Procedia Engineering,2015,106:83-91.
[42] LIU R,PAN H,CHEN Y. Control strategy for electro-hydraulic position servo system with generalized pulse code modulation[J]. Chinese Journal of Mechanical Engineering,2007,20(3):50-53.
[43] LINJAMA M,VILENIUS M. Energy-efficient motion control of a digital hydraulic joint actuator[C]//Proceedings of the JFPS International Symposium on Fluid Power. The Japan Fluid Power System Society,2005:640-645.
[44] LINJAMA M,HUOVA M,HUHTALA K. Model-based force and position tracking control of an asymmetric cylinder with a digital hydraulic valve[J]. International Journal of Fluid Power,2016,17(3):163-172.
[45] LINJAMA M,VIHTANEN H P,SIPOLA A,et al. Secondary controlled multi-chamber hydraulic cylinder[C]//Proceedings of the 11th Scandinavian International Conference on Fluid Power ,June 2-4,2009,Linköping,Sweden. Linköping University Electronic Press,2009:2-4.
[46] HUOVA M,LAAMANEN A,LINJAMA M. Energy efficiency of three-chamber cylinder with digital valve system[J]. International Journal of Fluid Power,2010,11(3):15-22.
[47] DELL'AMICO A,CARLSSON M,NORLIN E,et al. Investigation of a digital hydraulic actuation system on an excavator arm[C]//Proceedings of the 13th Scandinavian International Conference on Fluid Power,June 3-5,2013,Linköping,Sweden:Linköping University Electronic Press,2013:505-511.
[48] HUOVA M,LINJAMA M. Digital hydraulic valve control in a multi-pressure system[C]//The 11th Workshop on Digital Fluid Power,September 19-20,2022,Edinburgh,Scotland. The University of Edinburgh,2022:1-14.
[49] HEYBROEK K,SAHLMANC M. A hydraulic hybrid excavator based on multi-chamber cylinders and secondary control-design and experimental validation[J]. International Journal of Fluid Power,2018,19(2):91-105.
[50] HEEMSKERK E,BONEFELD R,BUSCHMANN H. Control of a semi-binary hydraulic four-chamber cylinder[C]//Proceedings of the 14th Scandinavian International Conference on Fluid Power,May 20-22,2015,Tampere,Finland. Tampere University of Technology,2015:20-22.
[51] PETTERSSON K,HEYBROEK K,MATTSSON P,et al. A novel hydromechanical hybrid motion system for construction machines[J]. International Journal of Fluid Power,2017,18(1):17-28.
[52] KETONEN M,LINJAMA M. Digital hydraulic IMV system in an excavator-first results[C]//Proceedings of the 16th Scandinavian International Conference on Fluid Power,May 22-24,2019,Tampere,Finland. Tampere University of Technology,2019:22-24.
[53] FISCHER H,LAAMANEN A,ISO-HEIKO A,et al. Digital hydraulics on rails-pilot project of improving reliability on railway rolling stock by utilizing digital valve system[C]//Proceedings of the 14th Scandinavian International Conference on Fluid Power,May 20-22,2015,Tampere,Finland. Tampere University of Technology,2015:644-654.
[54] LINJAMA M,HOPPONEN V,IKONEN A,et al. Design and implementation of digital hydraulic synchronization and force control system[C]//Proceedings of the 11th Scandinavian International Conference on Fluid Power,June 2-4,2009,Linköping,Sweden. Linköping University Electronic Press,2009:42-43.
[55] VOLVO. Groundbreaking electro-hydraulic system wins volvo technology award[EB/OL] (2021-09-06) [2023-06-08]. https://www.volvogroup.com/en/news-and-media/news/2021/sep/news-4059234.html.
[56] 张国贤. 液压气动专利讲坛(4)—浮杯泵[J].流体传动与控制,2012(2):54-56. ZHANG Guoxian. Hydropneumatic patent forum(4) -floating cup[J]. Fluid Power Transmission and Control,2012(2):54-56.
[57] VAEL G E M,LOPEZ I,ACHTEN P A J. Reducing flow pulsation with the floating cup pump-theoretical analysis[C]//Proceedings of Bath Workshop on Power Transmission and Motion Control (PTMC 2004). Professional Engineering Publishing Ltd,2004:123-141.
[58] ACHTEN P A J,VAN DEN BRINK T L,POTMA J W. Movement of the cups on the barrel plate of a floating cup,axial piston machine[J]. International Journal of Fluid Power,2004,5(2):25-33.
[59] 桑勇,王晓,王鹏鹏. 浮杯原理及其在液压系统中的应用研究[J]. 液压气动与密封,2014,34(1):23-28. SANG Yong,WANG Xiao,WANG Pengpeng. Floating-cup principle and its application research in the hydraulic system[J]. Hydraulics Pneumatics & Seals,2014,34(1):23-28.
[60] 巩良,赵惠清. 一种新型变量浮杯泵[J].液压与气动,2013(5):108-110. GONG Liang,ZHAO Huiqing. A new design of variable floating cup pump[J]. Chinese Hydraulics & Pneumatics,2013(5):108-110.
[61] ACHTEN P A J,VAN DEN BRINK T L,PAARDENKOOPER T,et al. Design and testing of an axial piston pump based on the floating cup principle[J]. Proc. SICFP,2003(3):805-820.
[62] ACHTEN P A J,SCHELLEKENS M P A,MURRENHOFF H,et al. Efficiency and low speed behavior of the floating cup pump[J]. SAE transactions,2004:366-376.
[63] ACHTEN P A J. Volumetric losses of a multi piston floating cup pump[C]//Proceedings of 50th National Conference on Fluid Power (NCFP). 2005:337-348.
[64] VAN DEN BRINK T L,ACHTEN P A J. Containing the cup in the floating cup axial piston machine[C]//Proceedings of the Bath Workshop on Power Transmission and Motion Control(PTMC 2006). Centre for Power Transmission and Motion Control,2006:131-145.
[65] ACHTEN P A J,EGGENKAMP S,POTMA J. Reducing the wall thickness of the cups and pistons in floating cup pumps and motors[C]//Proceedings of the 11th International Fluid Power Conference,IFAS,2018:84-95.
[66] MOMMERS R F H,BEIJER J G J,ACHTEN P A J. High volume production of pistons and cups for floating cup pumps and motors[C]//Proceedings of the 11th International Fluid Power Conference. Wiley Publishing,2022:1-14.
[67] ACHTEN P A J,EGGENKAMP S,POTMA H W. Swash plate oscillation in a variable displacement floating cup pump[C]//Proceedings of the 13th Scandinavian International Conference on Fluid Power. Linköping University Electronic Press,2013:163-176.
[68] Bucher Hydraulics. Efficient system solutions for the electrification of mobile machines[EB/OL]. (2022-09) [2023-07-10]. https://www.bucherhydraulics.com/datacat/files/Katalog/Systemloesungen/Elektrifizierung%20mobiler%20Maschinen/Elektrifizierung-mobiler-Maschinen_300-FL-9010633-en.pdf.
[69] Bucher Hydraulics. Overall efficiency optimized[EB/OL]. (2020-09)[2023-07-10]. https://www.bucherhydraulics.com/datacat/files/Katalog/Fachartikel/Elektrifizierung/Technical%20Article_Electrification_100-en.pdf.
[70] QIAO Shufei,QUAN Long,HAO Yunxiao,et al. Design and characteristic research of a novel electromechanical- hydraulic hybrid actuator with two transmission mechanisms[J]. Frontiers of Mechanical Engineering,2023,18(2):19.
[71] HAO Yunxiao,QUAN Long,QIAO Shufei,et al. Coordinated control and characteristics of an integrated hydraulic-electric hybrid linear drive system[J]. IEEE/ASME Transactions on Mechatronics,2022,27(2):1138-1149.
[72] LI Zepeng,WANG Chengwen,QUAN Long,et al. Study on energy efficiency characteristics of the heavy-duty manipulator driven by electro-hydraulic hybrid active-passive system[J]. Automation in Construction,2021,125:1-13.
[73] 乔舒斐,郝云晓,权龙,等. 机电液混合驱动直线执行器构型设计与性能测试[J]. 机械工程学报,2022,58(5):212-222. QIAO Shufei,HAO Yunxiao,QUAN Long,et al. Configuration design and performance test of electromechanical hydraulic hybrid driving linear actuator[J]. Journal of Mechanical Engineering,2022,58(5):212-222.
[74] 郝云晓,乔舒斐,夏连鹏,等. 液电混合直线驱动系统耦合特性及位置控制[J]. 机械工程学报,2021,57(22):386-394. HAO Yunxiao,QIAO Shufei,XIA Lianpeng,et al. Coupling characteristics and position control of hydraulic-electric hybrid linear drive system[J]. Journal of Mechanical Engineering,2021,57(22):386-394.
[75] AN K,KANG H,AN Y,et al. Methodology of excavator system energy flow-down[J]. Energies,2020,13(4):951.

基金

国家自然科学基金资助项目(51875385,51805349)。
PDF(896 KB)

977

Accesses

0

Citation

Detail

段落导航
相关文章

/