基于非线性弹簧模型的轮腿自平衡机器人跳跃算法研究

高靖松, 金弘哲, 朱延河, 高良, 吕红亚, 赵杰, 蔡鹤皋

机械工程学报 ›› 2023, Vol. 59 ›› Issue (9) : 51-62.

PDF(533 KB)
PDF(533 KB)
机械工程学报 ›› 2023, Vol. 59 ›› Issue (9) : 51-62. DOI: 10.3901/JME.2023.09.051
机器人及机构学

基于非线性弹簧模型的轮腿自平衡机器人跳跃算法研究

  • 高靖松1, 金弘哲1, 朱延河1, 高良1, 吕红亚2, 赵杰1, 蔡鹤皋1
作者信息 +

Research on Jumping Algorithm of Wheel-legged Self-balancing Robot Based on Nonlinear Spring Model

  • GAO Jingsong1, JIN Hongzhe1, ZHU Yanhe1, GAO Liang1, Lü Hongya2, ZHAO Jie1, CAI Hegao1
Author information +
文章历史 +

摘要

轮腿式自平衡机器人兼具轮式的高速高效性和足式的地面适应性,在面对非结构化地形时可以进行跳跃越障。按照腿部自由度可将其分为单自由度式和二自由度式,其中单自由度式轮腿自平衡机器人结构更简单、质量更轻、控制难度更低。但在跳跃轨迹规划问题上,一方面单自由度腿部结构对髋关节出力需求更高,采用双质量块线性弹簧模型轨迹规划方法能够达到的最大越障高度有限;另一方面机器人在高度调整过程中整体质心会产生x向位移,对跳跃的准确性与稳定性造成影响。针对单自由度式轮腿自平衡机器人跳跃问题展开研究,首先提出了基于腾空动力学模型的轮部控制算法,使机身俯仰姿态在跳跃过程中始终可控,进而保证了跳跃的稳定性。之后提出了基于双质量块非线性弹簧模型的跳跃轨迹规划方法,相比基于线性弹簧模型的规划方法具有轨迹规划更加灵活,对髋关节出力要求更低等优点;然后进一步利用轮部在腾空过程中对机身俯仰角的控制效果,设计了一种机器人原地跳远方法,使机器人可以在更短的起跳时间和起跳距离下达到相同的跳跃距离;最后建立了单自由度式轮腿自平衡机器人三维简化模型及其运动学、单腿静力学以及腾空动力学模型,并通过Simulink-Adams联合仿真验证了轨迹规划与跟踪算法的可行性。

Abstract

The wheel-legged self-balancing robot has both the high speed and efficiency of the wheeled type and the ground adaptability of the legged type. When facing unstructured terrain, it can overcome obstacles by jumping. According to the degree of freedom of the legs, it can be divided into single-degree-of-freedom type and two-degree-of-freedom type. Among them, the single-degree-of-freedom type has a simpler structure, lighter weight and less difficult to control. However, on the problem of jump trajectory planning, on the one hand, the leg structure has a higher demand for the output of the hip joint, which limits the maximum obstacle height that can be achieved by using the two-mass linear spring model trajectory planning method; On the other hand, the overall center of mass will move in the x-direction during the height adjustment process, which will affect the accuracy and stability of jumping. A research on the jumping problem of a single-degree-of-freedom wheel-legged self-balancing robot is carried out. Firstly, in order to ensure the stability of jumping, a wheel control algorithm is proposed to control the pitch attitude of the fuselage during the whole jumping process. After that, a trajectory planning method based on a two-mass nonlinear spring model is proposed and proved to be more flexible and powerful comparing with the planning method based on the two-mass linear-spring model. Then, a method of long jump in situ is designed by using the wheel control algorithm furtherly, so that the robot can achieve the same jumping distance in a shorter takeoff time and distance. The three-dimensional model of the robot is established, as well as its kinematics, single-leg statics and aerial dynamics models. The jump trajectory planning and tracking algorithms proposed in this paper is realized in the Simulink-Adams simulation and proved to be feasible.

关键词

轮腿自平衡机器人 / 轨迹规划 / 跳跃控制 / 非线性弹簧

Key words

wheel-legged self-balancing robot / trajectory planning / jumping algorithm / nonlinear spring

引用本文

导出引用
高靖松, 金弘哲, 朱延河, 高良, 吕红亚, 赵杰, 蔡鹤皋. 基于非线性弹簧模型的轮腿自平衡机器人跳跃算法研究[J]. 机械工程学报, 2023, 59(9): 51-62 https://doi.org/10.3901/JME.2023.09.051
GAO Jingsong, JIN Hongzhe, ZHU Yanhe, GAO Liang, Lü Hongya, ZHAO Jie, CAI Hegao. Research on Jumping Algorithm of Wheel-legged Self-balancing Robot Based on Nonlinear Spring Model[J]. Journal of Mechanical Engineering, 2023, 59(9): 51-62 https://doi.org/10.3901/JME.2023.09.051

参考文献

[1] 汪步云,彭稳,梁艺,等. 全地形移动机器人悬架机构设计及特性分析[J]. 机械工程学报,2022,58(9):71-86. WANG Buyun,PENG Wen,LIANG Yi,et al. Characteristics analysis and optimization design of suspension mechanism of all-terrain mobile robot[J]. Journal of Mechanical Engineering,2022,58(9):71-86.
[2] QIANG R,WU J,YAO Y A. Design and analysis of a multi-legged robot with pitch adjustive units[J]. Chinese Journal of Mechanical Engineering,2021,34(3):64-81.
[3] ZHENG Y,XU K,TIAN Y,et al. Bionic design and analysis of a novel quadruped robot with a multistage buffer system[J]. Chinese Journal of Mechanical Engineering,2022,35(2):32-52.
[4] Boston Dynamics. About handle[OL]. (2019-11-22)[2019-11-25]. http://www.bostonDynamics.com/handle.
[5] KLEMM V,MORRA A,SALZMANN C,et al. Ascento:A two-wheeled jumping robot[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE,2019:515-7521.
[6] KLEMM V,MORRA A,GULICH L,et al. LQR-Assisted whole-body control of a wheeled bipedal robot with kinematic loops[J]. IEEE Robotics and Automation Letters,2020,5(2):3745-3752.
[7] CUI L,WANG S,ZHANG J,et al. Learning-Based balance control of wheel-legged robots[J]. IEEE Robotics and Automation Letters,2021,6(4):7667-7674.
[8] 王振楠. 液压单腿机器人的设计与竖直跳跃控制研究[D]. 哈尔滨:哈尔滨工业大学,2018. WANG Zhennan. Design of hydraulic single leg robot and research on vertical jump control[D]. Harbin:Harbin Institute of Technology,2018.
[9] 高得胜. 气动双关节弹跳腿跳跃机理与实验研究[D].哈尔滨:哈尔滨工业大学,2021. GAO Desheng. Jumping mechanism and experimental study of pneumatic double joint spring leg[D]. Harbin:Harbin Institute of Technology,2021.
[10] HUTTER M,REMY C D,HOEPFLINGER M A,et al. High compliant series elastic actuation for the robotic leg ScarlETH[M]. World Scientific Publishing,2011.
[11] 陈志伟. 液压驱动单腿跳跃机器人控制系统研究[D].杭州:浙江大学,2016. CHEN Zhiwei. Research on control system of hydraulically actuated single-legged hopping robot[D]. Hangzhou:Zhejiang University,2016.
[12] TERRY P,PIOVAN G,BYL K. Towards precise control of hoppers:using high order partial feedback linearization to control the hopping robot FRANK[C]//2016 IEEE 55th Conference on Decision and Control(CDC). IEEE,2016:6669-6675.
[13] SEMINI C,TSAGARAKIS N G,GUGLIELMINO E,et al. Design of HyQ-a hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2011,225(6):831-849.
[14] MATHIS F B,MUKHERJEE R. Apex height control of a two-mass robot hopping on a rigid foundation[J]. Mechanism & Machine Theory,2016,105:44-57.
[15] 单开正,于海涛,韩亮亮,等. 近似直驱双足机器人跳跃运动非线性优化及试验验证[J]. 机械工程学报,2021,57(13):153-162. SHAN Kaizheng,YU Haitao,HAN Liangliang,et al. Nonlinear optimization and experimental validation of a quasi-direct-drive bipedal robot's jumping motion[J]. Journal of Mechanical Engineering,2021,57(13):153-162.
[16] 于建均,张远,左国玉,等. 基于ZMP判据的仿人机器人步态模仿[J]. 北京工业大学学报,2018,44(9):1187-1192. YU Jianjun,ZHANG Yuan,ZUO Guoyu,et al. Humanoid robot gait imitation based on ZMP criterion[J]. Journal of Beijing University of Technology,2018,44(9):1187-1192.
[17] 樊一霄. 轮腿机器人跳跃控制研究[D]. 哈尔滨:哈尔滨工业大学,2020. FAN Yixiao. Research on the jumping control of the wheel-legged robot[D]. Harbin:Harbin Institute of Technology,2020.
[18] Li X,FAN Y,YU H,et al. Stable jump control for the wheel-Legged robot based on TMS-DIP model[J]. Industrial Robot,2022,49(2):212-225.
[19] 于淏阳. 液压双足轮腿机器人跳跃控制研究[D]. 哈尔滨:哈尔滨工业大学,2021. YU Haoyang. Research on the jump control of hydraulic wheel-leg biped robot[D]. Harbin:Harbin Institute of Technology,2021.
[20] CHEN H,WANG B,HONG Z,et al. Underactuated motion planning and control for jumping with wheeled-bipedal robots[J]. IEEE Robotics and Automation Letters,2020,6(2):747-754.
[21] 罗尧,王慧. 非线性弹簧阻尼减振装置的研究[J]. 物理与工程, 2011, 21(5):4. LUO Yao,WANG Hui. Study of the nonlinear damping spring shock absorbers[J]. Physics and Engineering, 2011, 21(5):4.
[22] 蔡春山,王佐勋. 基于LQR的两轮机器人的平衡控 制[J]. 齐鲁工业大学学报,2018,32(1):55-60. CAI Chunshan,WANG Zuoxun. Balance control of two-wheeled robot based on LQR[J]. Journal of Qilu University of Technology,2018,32(1):55-60.
[23] 闻双云. 两轮自平衡小车控制算法的研究与优化[D]. 长春:吉林大学,2017. WEN Shuangyun. The research and optimization on control algorithm of two-wheeled self-balance vehicle[D]. Changchun:Jilin University,2017.

基金

国家自然科学基金(92048301)和科技创新2030-“脑科学与类脑研究”

重大(2021ZD0201403)资助项目。

PDF(533 KB)

670

Accesses

0

Citation

Detail

段落导航
相关文章

/