基于液-气转化机制软体机械手的设计与位置控制

孙敏洁, 陈松雨, 李军锋, 黄永安

机械工程学报 ›› 2022, Vol. 58 ›› Issue (18) : 205-217.

PDF(1019 KB)
PDF(1019 KB)
机械工程学报 ›› 2022, Vol. 58 ›› Issue (18) : 205-217. DOI: 10.3901/JME.2022.18.205
技术开发

基于液-气转化机制软体机械手的设计与位置控制

  • 孙敏洁1, 陈松雨1, 李军锋1, 黄永安2
作者信息 +

Design and Control of Soft Manipulator Based on the Liquid-vapor Transition Mechanism

  • SUN Minjie1, CHEN Songyu1, LI Junfeng1, HUANG Yongan2
Author information +
文章历史 +

摘要

针对现有软体机械手存在形变模型不准确、操作空间小和位置控制精度低等问题,设计出一种液-气相变驱动三关节软体机械手并进行了相应的形变改进模型分析与运动控制试验。建立一种考虑温度与材料自重因素的硅胶形变非线性力学模型且基于该模型完成了机械手的弯曲性能分析,建立三关节机械手末端操作空间的数学模型。而后基于传统刚性机械手的运动学逆解算法,提出一种基于最小驱动能量函数的运动学逆解方法来确定机械手各关节的弯曲角度。通过最小驱动能量函数并利用神经网络算法策略实现了三关节软体机械手末端轨迹的稳定控制,其相对位置距离偏差小于2.8%。通过充分的试验和理论分析,为液-气相变转化驱动软体机械手的后期实际应用提供了理论支撑。

Abstract

Traditional soft manipulators demonstrate several shortcomings, such as small working space, inaccurate deformation model and position tracking control. In this paper, a three-joint soft manipulator based on liquid-vapor actuator is fabricated, modeled and tested. Firstly, a nonlinear mechanical model considering the gravity and temperature of the silicone material is proposed to achieve accurate bending model of the manipulator. The working space of the manipulator is analyzed using D-H coordinate method. Secondly, a kinematics inverse solution method based on the minimum actuating energy function is used to determine the bending angel of each join for the manipulator. Finally, a hybrid control strategy by combining the minimum actuating energy function and radial basis function neural network is developed to control the position of manipulator. The experimental results demonstrate that the proposed method leads to accurate position tracking results. In conclusion, the design and control method proposed in this paper may provide an alternative to soft manipulators in the future.

关键词

软体机械手 / 液-气相变驱动器 / 位置控制

Key words

soft manipulator / actuator based on liquid-vapor mechanism / position tracking control

引用本文

导出引用
孙敏洁, 陈松雨, 李军锋, 黄永安. 基于液-气转化机制软体机械手的设计与位置控制[J]. 机械工程学报, 2022, 58(18): 205-217 https://doi.org/10.3901/JME.2022.18.205
SUN Minjie, CHEN Songyu, LI Junfeng, HUANG Yongan. Design and Control of Soft Manipulator Based on the Liquid-vapor Transition Mechanism[J]. Journal of Mechanical Engineering, 2022, 58(18): 205-217 https://doi.org/10.3901/JME.2022.18.205

参考文献

[1] LU Zongxing,LI Wanxin,ZHANG Liping. Research development of soft manipulator:A review[J]. Advances in Mechanical Engineering,2020,12(8):1-12.
[2] Cianchetti M,Laschi C,Menciassi A,et al. Biomedical applications of soft robotics[J]. Nature Reviews Materials,2018,3(6):143-153.
[3] 张进华,王韬,洪军,等. 软体机械手研究综述[J]. 机械工程学报,2017,53(13):19-28.ZHANG Jinhua,WANG Tao,HONG Jun,et al. Review of soft-bodied manipulator[J]. Journal of Mechanical Engineering,2017,53(13):19-28.
[4] CHEN Cong,TANG Wei,HU Yu,et al. Fiber-reinforced soft bending actuator control utilizing on/off valves[J]. Journal of Engineering,2020,5(4):6732-6739.
[5] Martinez R V,Glavan A C,Keplinger C,et al. Soft actuators and robots that are resistant to mechanical damage[J]. Advanced Functional Materials,2014,24(20):3003-3010.
[6] Manti M,Hassan T,Passetti G,et al. A bioinspired soft robotic gripper for adaptable and effective grasping[J]. Soft Robotics,2015,2(3):107-116.
[7] ZHOU Zhiwei,LI Qingwei,CHEN Luzhuo,et al. A large-deformation phase transition electrothermal actuator based on carbon nanotube-elastomer composites[J]. Journal of materials chemistry B,2016,4(7):1228-1234.
[8] Bilodeau R A,Miriyev A,Lipson H,et al. All-soft material system for strong soft actuators[C]//2018 IEEE International Conference on Soft Robotics. Livorno,Italy,2018:288-294.
[9] WANG Hongzhang,YAO Youyou,WANG Xiangjiang,et al. Large-magnitude transformable liquid-metal composites[J]. ACS Omega,2019,4(1):2311-2319.
[10] Wehner M,Truby R L,Fitzgerald D J,et al. An integrated design and fabrication strategy for entirely soft,autonomous robots[J]. Nature,2016,536(7617):451-455.
[11] NakaHara K,Narsumi K,Niiyama R,et al. Electric phase-change actuator with inkjet printed flexible circuit for printable and integrated robot prototyping[C]//2017 IEEE International Conference on Robotics and Automation(ICRA),Singapore,2017:1856-1863.
[12] LI Xiying,DUAN Huiling,LV Pengyu,et al. Soft actuators based on liquid–vapor phase change composites[J]. Soft Robotics,2021,8(3):251-261.
[13] LI Junfeng,SUN Minjie,WU Zuqi. Design and fabrication of a low-cost silicone and water-based soft actuator with a high load-to-weight ratio[J]. Soft Robotics,2020,8(4):448-461.
[14] WANG Jiangbei,MIN Jian,FEI Yanqiong,et al. Study on nonlinear crawling locomotion of modular differential drive soft robot[J]. Nonlinear dynamics,2019,97(2):1107-1123.
[15] 范需,戴宁,王宏涛,等. 气动网格软体驱动器弯曲变形预测方法[J]. 中国机械工程,2020,31(9):1108-1114.FAN Xu,DAI Ning,WANG Hongtao,et al. Bending deformation prediction method of soft actuators with pneumatics networks[J]. China Mechanical Engineering,2020,31(9):1108-1114.
[16] 陈家照,黄闽翔,王学仁,等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报,2015,29:118-124.CHEN Jiazhao,HUANG Minxiang,WANG Xueren,et al. Typical constitutive models of rubber materials and their ranges of application[J]. Materials Reports,2015,29:118-124.
[17] 姚立纲,李敬仪,东辉. 气动软体机械臂模块变刚度性能分析[J]. 机械工程学报,2020,56(9):36-44.YAO Ligang,LI Jingyi,DONG Hui. Variable stiffness analysis on a pneumatic soft manipulator[J]. Journal of Mechanical Engineering,2020,56(9):36-44.
[18] Calderon A A,Ugalde J C,Chang L L. An earthworm-inspired soft robot with perceptive artificial skin[J]. Bioinspiration & biomimetics,2019,14(5):056012.
[19] 杨全生,李洪升,张小鹏. 橡胶大变形力学常数测试研究[J]. 航空学报,1990,11(3):156-160.YANG Quansheng,LI Hongsheng,ZHANG Xiaopeng. Study on experimental measurement of mechanical constants of rubber under later deformation[J]. Acta Aeronautica et Astronautica Sinica,1990,11(3):156-160.
[20] Webster R J. Design and kinematic modeling of constant curvature continuum robots:A review[J]. The International Journal of Robotics Research,2010,29(13):1661-1683.
[21] LI Junfeng,SUN Minjie,WU Zuqi,et al. Design,analysis,and grasping experiments of a novel soft hand:Hybrid actuator using shape memory alloy actuators,motors,and electromagnets[J]. Soft Robotics,2020,7(3):396-407.
[22] Qi R H,Khajepour A,Melek W W,et al. Design,kinematics,and control of a multijoint soft inflatable arm for human-safe interaction[J]. IEEE Transactions on Robotics,2017,33(3):594-609.
[23] LI Junfeng. Position control based on the estimated bending force in a soft robot with tunable stiffness[J]. Mechanical Systems and Signal Processing,2019,134:106335.
[24] Thuruthel TG,Falotico E,Renda F,et al. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators[J]. IEEE Transactions on Robotics,2019,35(1):124-134.
[25] Hyatt P,Kraus D,Sherrod V,et al. Configuration estimation for accurate position control of large-scale soft robots[J]. IEEE-ASME Transactions on Mechatronics,2019,24(1):88-99.
[26] HUANG Xinjia,ZOU Jiang,GU Guoying. Kinematic modeling and control of variable curvature soft continuum robots[J]. IEEE-ASME Transactions on Mechatronics,2021,26(6):3175-3185.
[27] Patterson Z J,Sabelhaus A P,Majidi C. Robust control of a multi-axis shape memory alloy-driven soft manipulator[J]. IEEE robotics and automation letters,2022,7(2):2210-2217.

基金

国家国防科工资局稳定(HTKJ2021KL502011)和国家自然科学基金(51925503)资助项目。
PDF(1019 KB)

339

Accesses

0

Citation

Detail

段落导航
相关文章

/