风电功率短期预测技术研究进展

唐新姿, 顾能伟, 黄轩晴, 彭锐涛

机械工程学报 ›› 2022, Vol. 58 ›› Issue (12) : 213-236.

PDF(645 KB)
PDF(645 KB)
机械工程学报 ›› 2022, Vol. 58 ›› Issue (12) : 213-236. DOI: 10.3901/JME.2022.12.213
可再生能源与工程热物理

风电功率短期预测技术研究进展

  • 唐新姿1, 顾能伟1, 黄轩晴2, 彭锐涛1
作者信息 +

Progress on Short Term Wind Power Forecasting Technology

  • TANG Xinzi1, GU Nengwei1, HUANG Xuanqing2, PENG Ruitao1
Author information +
文章历史 +

摘要

风电不可避免的随机性、间歇性和不确定性给并网、电力调度与消纳带来巨大挑战。通过风电功率预测对风电波动进行有效评估,对于降低风电不确定性风险推进风电稳步发展具有重要意义。针对当前大规模风电发展中至关重要的短期风功率预测精度问题,介绍了风电短期预测误差来源及影响,分类阐述了确定性和不确定性风电功率短期预测方法原理、优缺点、评价指标及适用性,从异常数据的检测与清洗、缺失数据的重构、数据特征的选择或提取、数据聚类、数据分解、优化算法改进和考虑物理模型等方面,探讨并综述了风电功率预测精度提升关键技术及其最新研究进展,最后对未来风电功率预测技术发展趋势进行了展望,为提升风电功率短期预测精度、推进精细化预测技术发展、保障系统安全稳定运行提供参考。

Abstract

The inevitable randomness, intermittence and uncertainty of wind power bring great challenges to grid connection, power dispatching and consumption. Effective assessment of wind power fluctuations through wind power forecasting is of great significance to reduce the risk of wind power uncertainty and promote the steady development of wind power. Aiming at the crucial problem of short-term wind power prediction accuracy in the current development of large-scale wind power, the sources and influences of short-term wind power prediction error are introduced, the principles, advantages and disadvantages, accuracy evaluation criteria and applicability of deterministic and probabilistic short-term wind power forecasting methods are elaborated. The latest research progress of key technologies to improve the accuracy of wind power prediction from the aspects of abnormal data detection and cleaning, missing data reconstruction, data feature selection or extraction, data clustering, data decomposition, optimization algorithm improvement and consideration of physical model are investigated and summarized, and finally the prospect of future development trend of wind power prediction technology is concluded, providing a reference for improving the short-term prediction accuracy of wind power, promoting the development of refined prediction technology, and ensuring the safe and stable operation of the system.

关键词

风电功率预测 / 预测精度 / 深度学习 / 区间预测 / 组合预测模型

Key words

wind power forecasting / prediction accuracy / deep learning / interval prediction / combined forecasting model

引用本文

导出引用
唐新姿, 顾能伟, 黄轩晴, 彭锐涛. 风电功率短期预测技术研究进展[J]. 机械工程学报, 2022, 58(12): 213-236 https://doi.org/10.3901/JME.2022.12.213
TANG Xinzi, GU Nengwei, HUANG Xuanqing, PENG Ruitao. Progress on Short Term Wind Power Forecasting Technology[J]. Journal of Mechanical Engineering, 2022, 58(12): 213-236 https://doi.org/10.3901/JME.2022.12.213

参考文献

[1] 范忠瑶, 康顺, 赵萍. 上风向风力机塔影效应的数值模拟研究[J]. 工程热物理学报, 2012, 33(10):1707-1710. FAN Zhongyao, KANG Shun, ZHAO Ping, Numerical simulations of upwind wind turbine tower shadow effects[J]. Journal of Engineering Thermophysics, 2012, 33(10):1707-1710.
[2] 郁琛, 薛禹胜, 文福拴, 等. 风电功率预测误差的风险评估[J]. 电力系统自动化, 2015, 39(7):52-58. YU Chen, XUE Yusheng, WEN Fushuan, et al. Risk assessment of wind power prediction errors[J]. Automation of Electric Power Systems, 2015, 39(7):52-58.
[3] 郁琛, 吴培华, 谢东亮, 等. 风电预测正、负误差对电力系统运行的不同影响[J]. 煤炭工程, 2017, 49(增刊1):85-89. YU Chen, WU Peihua, XIE Dongliang, et al. Different impacts of wind power prediction positive error and negative error on power system operation[J]. Coal Engineering, 2017, 49(Suppl.1):85-89.
[4] 夏添, 查晓明, 秦亮. 计及风电功率误差的短期风电消纳评估[J]. 水电能源科学, 2015, 33(2):200-204. XIA Tian, ZHA Xiaoming, QIN Liang. Evaluation of short-term wind power accommodating considering wind power forecasting error[J]. Water Resources and Power, 2015, 33(2):200-204.
[5] HIGGINS P, FOLEY A M, DOUGLAS R, et al. Impact of offshore wind power forecast error in a carbon constraint electricity market[J]. Energy, 2014, 76:187-197.
[6] 陈曦寒, 高赐威. 考虑定桨距和变桨距风机联合控制的风电场有功功率控制策略[J]. 电网技术, 2015, 39(7):1892-1899. CHEN Xihan, GAO Ciwei. Active power control strategy for wind farm considering fixed and variable pitch wind turbines combined control[J]. Power System Technology, 2015, 39(7):1892-1899.
[7] 王江江, 王维庆, 王海云, 等. 风速波动时基于UKF-DFNN的变桨距控制[J]. 安徽大学学报, 2021, 45(2):55-62. WANG Jiangjiang, WANG Weiqing, WANG Haiyun, et al. Variable pitch control of wind turbine based on UKF-DFNN[J]. Journal of Anhui University, 2021, 45(2):55-62.
[8] MAHDIZADEH A, SCHMID R, OETOMO D. LIDAR-assisted exact output regulation for load mitigation in wind turbines[J]. IEEE Fransactions on Control Systems Technology, 2019, 29(3):1102-1116.
[9] 王晓兰, 李家亮, 马呈霞. 基于功率预测的变速变桨距风电系统的优化控制[J]. 电力系统保护与控制, 2013, 41(13):88-92. WANG Xiaolan, LI Jialiang, MA Chengxia. Optimization control of variable-speed variable-pitch wind power generation system based on power prediction[J]. Power System Protection and Control, 2013, 41(13):88-92.
[10] 李立成, 叶林. 采用虚拟调节算法的风电场有功功率控制策略[J]. 电力系统自动化, 2013, 37(10):41-47. LI Licheng, YE Li. Wind farm active power control strategy based on virtual regulation algorithm[J]. Automation of Electric Power Systems, 2013, 37(10):41-47.
[11] 路朋, 叶林, 汤涌, 等. 基于模型预测控制的风电集群多时间尺度有功功率优化调度策略研究[J]. 中国电机工程学报, 2019, 39(22):6572-6583. LU Peng, YE Lin, TANG Yong, et al. Multi-time scale active power optimal dispatch in wind power cluster based on model predictive control[J]. Proceedings of the CSEE, 2019, 39(22):6572-6583.
[12] 陈宁, 谢杨, 汤奕, 等. 考虑预测功率变化趋势的风电有功分群控制策略[J]. 电网技术, 2014, 38(10):2752-2758. CHEN Ning, XIE Yang, TANG Yi, et al. Strategy for active power control of wind farm in cluster considering variation trend of forecasting power[J]. Power System Technology, 2014, 38(10):2752-2758.
[13] 邓鹤鸣, 汤亮亮, 吴晓刚, 等. 基于风机调控能力排序的风电场实时有功控制策略[J]. 电网技术, 2018, 42(8):2577-2584. DENG Heming, TANG Liangliang, WU Xiaogang, et al. Active power control strategy of wind farms based on wind turbine regulation ability ranking[J]. Power System Technology, 2018, 42(8):2577-2584.
[14] 路朋, 叶林, 裴铭, 等. 风电集群有功功率模型预测协调控制策略[J]. 中国电机工程学报, 2021, 41(17):5887-5899. LU Peng, YE Lin, PEI Ming, et al. Coordinated control strategy for active power of wind power cluster based on model, predictive control[J]. Proceedings of the CSEE, 2021, 41(17):5887-5899.
[15] 李丽, 叶林. 基于改进持续法的短期风电功率预测[J]. 农业工程学报, 2010, 26(12):182-187. LI Li, YE Lin. Short-term wind power forecasting based on an improved persistence approach[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12):182-187.
[16] SUN Y, LI Z, YU X, et al. Research on ultra-short-term wind power prediction considering source relevance[J]. IEEE Access, 2020(8):147703-147710.
[17] LU P, YE L, ZHONG W Z, et al. A novel spatio-temporal wind power forecasting framework based on multi-output support vector machine and optimization strategy[J]. Journal of Cleaner Production, 2020, 254:119993.
[18] TORRES J L, GARCIA A, MD B, et al. Forecast of hourly average wind speed with ARMA models in Navarre (Spain)[J]. Solar Energy, 2005, 79(1):65-77.
[19] KORPRASERTSAK N, LEEPHAKPREEDA T. Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models[J]. Energy, 2019, 180:387-397.
[20] LIU H, TIAN H Q, LI Y F. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 141:27-38.
[21] HAIGES R, WANG Y D, GHOSHRAY A, et al. Forecasting electricity generation capacity in Malaysia:An auto regressive integrated moving average approach[J]. Energy Procedia, 2017, 105:3471-3478.
[22] 赵征, 汪向硕. 基于CEEMD和改进时间序列模型的超短期风功率多步预测[J]. 太阳能学报, 2020, 41(7):352-358. ZHAO Zheng, WANG Xiangshuo. Ultra-short-term multi-step wind power prediction based on ceemd and improved time series model[J]. Acta Energiae Solaris Sinica, 2020, 41(7):352-358.
[23] CHERKASSKY V, MA Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1):113-126.
[24] LIU D, NIU D, WANG H, et al. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm[J]. Renewable Energy, 2014, 62:592-597.
[25] LI L L, ZHAO X, TSENG M L, et al. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm[J]. Journal of Cleaner Production, 2020, 242:118447.
[26] LI L L, CEN Z Y, TSENG M L, et al. Improving short-term wind power prediction using hybrid improved cuckoo search arithmetic-Support vector regression machine[J]. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2020.123739.
[27] 刘畅, 郎劲. 基于混核LSSVM的批特征风功率预测方法[J]. 自动化学报, 2020, 46(6):1264-1273. LIU Chang, LANG Jin. Wind power prediction method using hybrid kernel LSSVM with batch feature[J]. Acta Automatica Sinica, 2020, 46(6):1264-1273.
[28] DING M, ZHOU H, XIE H, et al. A time series model based on hybrid-kernel least-squares support vector machine for short-term wind power forecasting[J]. ISA Transactions, 2020, 108:58-68.
[29] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD-ACS-LSSVM的短期风电功率预测[J]. 太阳能学报, 2020, 41(5):83-90. JIANG Guimin, CHEN Zhijun, LI Xiaozhu, et al. Short-term prediction of wind power based on EEMD-ACS-LSSVM[J]. Acta Energiae Solaris Sinica, 2020, 41(5):83-90.
[30] LAHOUAR A, SLAMA J B H. Hour-ahead wind power forecast based on random forests[J]. Renewable Energy, 2017, 109:529-541.
[31] LIU J C, LI Y H. Study on environment-concerned short-term load forecasting model for wind power based on feature extraction and tree regression[J]. Journal of Cleaner Production, 2020, 264:121505.
[32] YAN J, LI K, BAI E W, et al. Hybrid probabilistic wind power forecasting using temporally local Gaussian process[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1):87-95.
[33] YAN J, LI K, BAI E, et al. Time series wind power forecasting based on variant Gaussian process and TLBO[J]. Neurocomputing, 2016, 189:135-144.
[34] LIU T H, WEI H K, ZHANG K J. Wind power prediction with missing data using Gaussian process regression and multiple imputation[J]. Applied Soft Computing, 2018, 71:905-916.
[35] WANG S X, ZHANG N, WU L, et al. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method[J]. Renewable Energy, 2016, 96:629-636.
[36] REN C, AN N, WANG J Z, et al. Optimal parameters selection for BP neural network based on particle swarm optimization:A case study of wind speed forecasting[J]. Knowledge-Based Systems, 2014, 56:226-239.
[37] ZHANG Y, CHEN B, PAN G, et al. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting[J]. Energy Conversion and Management, 2019, 195:180-197.
[38] MEDINA S V, AJENJO U P. Performance improvement of artificial neural network model in short-term forecasting of wind farm power output[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(3):484-490.
[39] ABDOOS A A. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting[J]. Neurocomputing, 2016, 203:111-120.
[40] 文孝强, 许洋. 基于EMD分解的风力机功率特性分析与预测建模[J]. 太阳能学报, 2021, 42(11):293-298. WEN Xiaoqiang, XU Yang. Analysis and prediction modeling of wind power characteristics based on EMD decomposition[J]. Acta Energiae Solaris Sinica, 2021, 42(11):293-298.
[41] 张红涛, 韩婧, 谭联, 等. 基于FCM和SSA-ELM的超短期风功率预测[J]. 工程科学与技术, 2020, 52(6):234-241. ZHANG Hongtao, HAN Jing, TAN Lian, et al. Ultra-short-term wind power prediction based on combination of FCM and SSA-ELM[J]. Advanced Engineering Sciences, 2020, 52(6):234-241.
[42] KAZUTOSHI H, YU F, YASUHIRO H. Feature extraction of NWP data for wind power forecasting using 3D-convolutional neural networks-ScienceDirect[J]. Energy Procedia, 2018, 155:350-358.
[43] HARBOLA S, COORS V. One dimensional convolutional neural network architectures for wind prediction[J]. Energy Conversion and Management, 2019, 195:70-75.
[44] HONG Y Y, SATRIANI T R A. Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network[J]. Energy, 2020, 209:118441.
[45] YILDIZ, C, ACIKGOZ, H, KORKMAZ, D, et al. An improved residual-based convolutional neural network for very short-term wind power forecasting[J]. Energy Conversion and Management, 2021, 228:113731.
[46] HU J M, TANG J W, LIN Y Y. A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization[J]. Renewable Energy, 2020, 149:141-164.
[47] TOUBEAU J F, DAPOZ P D, BOTTIEAU J, et al. Recalibration of recurrent neural networks for short-term wind power forecasting[J]. Electric Power Systems Research, 2021, 190:106639.
[48] LIU X, ZHOU J, QIAN H M. Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function[J]. Electric Power Systems Research, 2021, 192:107011.
[49] YU R G, GAO J, YU M, et al. LSTM-EFG for wind power forecasting based on sequential correlation features[J]. Future Generation Computer Systems, 2019, 93:33-42.
[50] SHAHID F, ZAMEER A, MUNEEB M. A novel genetic LSTM model for wind power forecast[J]. Energy, 2021, 223:120069.
[51] HAN L, JING H, ZHANG R C, et al. Wind power forecast based on improved long short term memory network[J]. Energy, 2019, 189:116300.
[52] DUAN J D, WANG P, MA W T, et al. Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network[J]. Energy, 2021, 214. https://doi.org/10.1016/j.energy.2020.118980.
[53] DING M, ZHOU H, XIE H, et al. A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting[J]. Neurocomputing, 2019, 365:54-61.
[54] NIU Z W, YU Z Y, TANG W H, et al. Wind power forecasting using attention-based gated recurrent unit network[J]. Energy, 2020, 196:117081.
[55] KISVARI A, LIN Z, LIU X. Wind power forecasting:A data-driven method along with gated recurrent neural network[J]. Renewable Energy, 2021, 163:1895-1909.
[56] ZHANG Y C, LE J, LIAO X B, et al. A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing[J]. Energy, 2019, 168:558-572.
[57] ZHANG G, LIU H C, ZHANG J B, et al. Wind power prediction based on variational mode decomposition multi-frequency combinations[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(2):281-288.
[58] WU Z C, XIA X J, XIAO L Y, et al. Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting[J]. Applied Energy, 2020, 261:114345.
[59] YUAN X H, TAN Q X, LEI X H, et al. Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine[J]. Energy, 2017, 129:122-137.
[60] 刘大贵, 王维庆, 张慧娥, 等. 马尔科夫修正的组合模型在新疆风电中长期可用电量预测中的应用[J]. 电网技术, 2020, 44(9):3290-3297. LIU Dagui, WANG Weiqing. ZHANG Huie, et al. Application of markov modified combination model mid-long term available quantity of electricity forecasting in Xinjiang wind power[J]. Power System Technology, 2020, 44(9):3290-3297.
[61] ZHAO H, LI B, ZHAO Z H. Short-term wind speed forecasting simulation research based on ARIMA-LSSVM combination method[C]//International Conference on Materials for Renewable Energy & Environment (ICMREE), 2011:583-586.
[62] 刘纯, 范高锋, 王伟胜, 等. 风电场输出功率的组合预测模型[J]. 电网技术, 2009, 33(13):74-79. LIU Chun, FAN Gaofeng, WANG Weisheng, et al. A combination forecasting model for wind farm output power[J]. Power System Technology, 2009, 33(13):74-79.
[63] ZHANG W Y, QU Z X, ZHANG K Q, et al. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting[J]. Energy Conversion and Management, 2017, 136:439-451.
[64] ZHOU Q G, WANG C, ZHANG G F. A combined forecasting system based on modified multi-objective optimization and sub-model selection strategy for short term wind speed[J]. Applied Soft Computing Journal, 2020, 94:106463.
[65] HU Q H, ZHANG R J, ZHOU Y C. Transfer learning for short-term wind speed prediction with deep neural networks[J]. Renewable Energy, 2016, 85:83-95.
[66] WANG L, TAO R, HU H L, et al. Effective wind power prediction using novel deep learning network:Stacked independently recurrent autoencoder[J]. Renewable Energy, 2021, 164:642-655.
[67] ZHU R J, LIAO W L, WANG Y S. Short-term prediction for wind power based on temporal convolutional network[J]. Energy Reports, 2020(6):424-429.
[68] 黄睿, 杜文娟, 王海风. 计及湍流强度的风电功率短期预测[J]. 电网技术, 2019, 43(6):1907-1914. HUANG Rui, DU Wenjuan, WANG Haifeng. Short-term prediction of wind power considering turbulence intensity[J]. Power System Technology, 2019, 43(6):1907-1914.
[69] MEKA R, ALAEDDINI A, BHAGANAGAR K. A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables[J]. Energy, 2021, 221:119759.
[70] SANTHOSH M, VENKAIAH C, KUMAR D M V. Short-term wind speed forecasting approach using ensemble empirical mode decomposition and deep Boltzmann machine[J]. Sustainable Energy, Grids and Networks, 2019, 19:100242.
[71] WANG K J, QI X X, LIU H D, et al. Deep belief network based k -means cluster approach for short-term wind power forecasting[J]. Energy, 2018, 165:840-852.
[72] 王新友, 李青, 郑少鹏. 基于EWT-ESN的短期风电功率预测研究[J]. 太阳能学报, 2018, 39(3):633-642. WANG Xinyou, LI Qing, ZHENG Shaopeng. Short-term wind power prediction based on EWT-ESN[J]. Acta Energiae Solaris Sinica, 2018, 39(3):633-642.
[73] WANG H Z, LEI Z X, LIU Y, et al. Echo state network based ensemble approach for wind power forecasting[J]. Energy Conversion and Management, 2019, 201:112188.
[74] TASCIKARAOGLU A, UZUNOGLU M. A review of combined approaches for prediction of short-term wind speed and power[J]. Renewable and Sustainable Energy Reviews, 2014, 34:243-254.
[75] 李玲玲, 许亚惠, 田晓越, 等. 基于组合模型的风电功率短期预测[J]. 电工技术学报, 2014, 29(增刊1):475-480. LI Lingling, XU Yahui, TIAN Xiaoyue, et al. Based on the combined model of short-term wind power prediction[J]. Transactions of China Electrotechnical Society, 2014, 29(Suppl.1):475-480.
[76] 赵欣, 王爽心, 刘如九. 基于灰色关联和协整理论的风功率组合预测研究[J]. 太阳能学报, 2017, 38(5):1299-1306. ZHAO Xin, WANG Shuangxin, LIU Rujiu. Research on combination wind power forecasting based on gray correlation and cointegration theory[J]. Acta Energiae Solaris Sinica, 2017, 38(5):1299-1306.
[77] JIANG P, LIU Z K. Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting[J]. Applied Soft Computing, 2019, 82.
[78] LI H M, WANG J Z, LU H Y, et al. Research and application of a combined model based on variable weight for short term wind speed forecasting[J]. Renewable Energy, 2018, 116:669-684.
[79] SUN M C, FENG C, ZHANG J. Multi-distribution ensemble probabilistic wind power forecasting[J]. Renewable Energy, 2020, 148:135-149.
[80] XIN P Z, LIU Y, YANG N, et al. Probability distribution of wind power volatility based on the moving average method and improved nonparametric kernel density estimation[J]. Global Energy Interconnection, 2020, 3(3):247-258.
[81] GU B, ZHANG T R, MENG H, et al. Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation[J]. Renewable Energy, 2021, 164:687-708.
[82] JIANG Y, HUANG G Q, YANG Q S, et al. A novel probabilistic wind speed prediction approach using real time refined variational model decomposition and conditional kernel density estimation[J]. Energy Conversion and Management, 2019, 185:758-773.
[83] SUN M C, FENG C, ZHANG J. Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation[J]. Applied Energy, 2019, 256:113842.
[84] YUAN X H, CHEN C, JIANG M, et al. Prediction interval of wind power using parameter optimized Beta distribution based LSTM model[J]. Applied Soft Computing, 2019, 82:105550.
[85] 杨宏, 苑津莎, 张铁峰. 一种基于Beta分布的风电功率预测误差最小概率区间的模型和算法[J]. 中国电机工程学报, 2015, 35(9):2135-2142. YANG Hong, YUAN Jinsha, ZHANG Tiefeng. A model and algorithm for minimum probability interval of wind power forecast errors based on beta distribution[J]. Proceedings of the CSEE, 2015, 35(9):2135-2142.
[86] 杨茂, 杨春霖, 董骏城. 基于预测误差分布优化模型的风电功率超短期概率区间预测研究[J]. 太阳能学报, 2019, 40(10):2967-2978. YANG Mao, YANG Chunlin, DONG Junqin. Ultra-short term probabilistic intervals forecasting of wind power based on optimization model of forecasting error distribution[J]. Acta Energiae Solaris Sinica, 2019, 40(10):2967-2978.
[87] 吴晓刚, 孙荣富, 乔颖, 等. 基于风电场功率特性的风电预测误差分布估计[J]. 电网技术, 2017, 41(6):1801-1807. WU Xiaogang, SUN Rongfu, QIAO Ying, et al. Estimation of error distribution for wind power prediction based on power curves of wind farms[J]. Power System Technology, 2017, 41(6):1801-1807.
[88] 黄越辉, 曲凯, 李驰, 等. 基于K-means MCMC算法的中长期风电时间序列建模方法研究[J]. 电网技术, 2019, 43(7):2469-2476. HUANG Yuehui, QU Kai, LI Chi, et al. Research on modeling method of medium-and long-term wind power time series based on K-means MCMC algorithm[J]. Power System Technology, 2019, 43(7):2469-2476.
[89] 张家安, 仇实, 宋关羽, 等. 考虑时序波动的风速分布描述方法[J]. 太阳能学报, 2020, 41(8):330-336. ZHANG Jiaan, QIU Shi, SONG Guanyu, et al. Wind speed distribution description method considering time series fluctuation[J]. Acta Energiae Solaris Sinica, 2020, 41(8):330-336.
[90] 王坤玉, 余侃胜, 张立栋, 等. 风功率三种概率分布特性对比分析[J]. 应用能源技术, 2014(5):35-38. WANG Kunyu, YU Kansheng, ZHANG Lidong, et al. Three kinds of comparative analysis of the probability distribution characteristics of wind power variations[J], Applied Energy Technology, 2014(5):35-38.
[91] 杨锡运, 张璜, 关文渊, 等. 基于滑动分块百分位数Bootstrap法的风电功率概率区间预测[J]. 太阳能学报, 2019, 40(2):430-437. YANG Xiyun, ZHANG Huang, GUAN Wenyuan, et al. Probabilistic intervals forecasting of wind power based on moving block percentile bootstrap method[J]. Acta Energiae Solaris Sinica, 2019, 40(2):430-437.
[92] TAHMASEBIFAR R, MOGHADDAM M P, SHEIKH-EL-ESLAMI M K, et al. A new hybrid model for point and probabilistic forecasting of wind power[J]. Energy, 2020, 211:119016.
[93] HE Y Y, YAN Y D, XU Q F. Wind and solar power probability density prediction via fuzzy information granulation and support vector quantile regression[J]. International Journal of Electrical Power and Energy Systems, 2019, 113:515-527.
[94] 杨锡运, 马雪, 张洋, 等. 基于EMD与加权马尔可夫链QR法的风电功率区间预测[J]. 太阳能学报, 2020, 41(2):66-72. YANG Xiyun, MA Xue, ZHANG Yang, et al. Probabilistic intervals forecasting of wind power based on emd weighted markov chain or method[J]. Acta Energiae Solaris Sinica, 2020, 41(2):66-72.
[95] PENG X S, WANG H Y, LANG J X, et al. EALSTM-QR:Interval wind-power prediction model based on numerical weather prediction and deep learning[J]. Energy, 2020, 220:119692.
[96] 阎洁, 李宁, 刘永前, 等. 短期风电功率动态云模型不确定性预测方法[J]. 电力系统自动化, 2019, 43(3):17-23. YAN Jie, LI Ning, LIU Yongqian, et al. Short-term uncertainty forecasting method for wind power based on real-time switching cloud model[J]. Automation of Electric Power Systems, 2019, 43(3):17-23.
[97] 林优, 杨明, 韩学山, 等. 基于条件分类与证据理论的短期风电功率非参数概率预测方法[J]. 电网技术, 2016, 40(4):1113-1119. LIN You, YANF Ming, HAN Xueshan, et al. Nonparametric approach for short-term probabilistic wind generation forecast based on conditional classification and evidence theory[J]. Power System Technology, 2016, 40(4):1113-1119.
[98] 鲍海波, 韦化, 郭小璇, 等. 考虑风电不确定性的概率区间潮流模型与算法[J]. 中国电机工程学报, 2017, 37(19):5633-5642, 5840. BAO Haibo, WEI Hua, GUO Xiaoxuan, et al. Model and algorithm of probabilistic interval power flow considering wind power uncertainty[J]. Proceedings of the CSEE, 2017, 37(19):5633-5642, 5840.
[99] HAN Q K, MA S, WANG T Y, et al. Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China[J]. Renewable and Sustainable Energy Reviews, 2019, 115:109387.
[100] 杨楠, 周峥, 陈道君, 等. 基于非参数核密度估计的风功率波动性概率密度建模方法[J]. 太阳能学报, 2019, 40(7):2028-2035. YANG Nan, ZHOU Zheng, CHEN Daojun, et al. Research of modeling method based on non-parametric kernel density estimation of probability of wind power fluctuations[J]. Acta Energiae Solaris Sinica, 2019, 40(7):2028-2035.
[101] 张晓英, 张晓敏, 廖顺, 等. 基于聚类与非参数核密度估计的风电功率预测误差分析[J]. 太阳能学报, 2019, 40(12):3594-3604. ZHANG Xiaoying, ZHANG Xiaomin, LIAO Shun, et al. Prediction error analysis of wind power based on clustering and non-parametric kernel density estimation[J]. Acta Energiae Solaris Sinica, 2019, 40(12):3594-3604.
[102] GUAN J S, LIN J, GUAN J L. et al. A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation[J]. International Journal of Hydrogen Energy, 2020, 45(43):23791-23808.
[103] DEHNAVI S D, SHIRANI A, MEHRJERDI H, et al. New deep learning-based approach for wind turbine output power modeling and forecasting[J]. IEEE Transactions on Industry Applications, 2020, 99:1.
[104] SHRIVASTAVA N A, KHOSRAVI A, PANIGRAHI B K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2):322-331.
[105] WANG H, XUE W L, LIU Y T, et al. Probabilistic wind power forecasting based on spiking neural network[J]. Energy, 2020, 196:117072.
[106] 杨锡运, 邢国通, 马雪, 等. 一种核极限学习机分位数回归模型及风电功率区间预测[J]. 太阳能学报, 2020, 41(11):300-306. YANG Xiyun, XING Guotong, MA Xue, et al. A model of quantile regression with kernel extreme learning machine and wind power interval prediction[J]. Acta Energiae Solaris Sinica, 2020, 41(11):300-306.
[107] ZHOU M, WANG B, GUO S D, et al. Multi-objective prediction intervals for wind power forecast based on deep neural networks[J]. Information Sciences, 2020, 550:207-220.
[108] 杨茂, 董骏城. 基于混合分布模型的风电功率波动特性研究[J]. 中国电机工程学报, 2016, 36(增刊1):69-78. YANG Mao, DONG Juncheng. Study on characteristics of wind power fluctuation based on mixed distribution model[J]. Proceedings of the CSEE, 2016, 36(Suppl.1):69-78.
[109] 刘燕华, 李伟花, 刘冲, 等. 短期风电功率预测误差的混合偏态分布模型[J]. 中国电机工程学报, 2015, 35(10):2375-2382. LIU Yanhua, LI Weihua, LIU Chong, et al. Mixed skew distribution model of short-term wind power prediction error[J]. Proceedings of the CSEE, 2015, 35(10):2375-2382.
[110] ZHANG J H, YAN J, WU W J, et al. Research on Short-term Forecasting and Uncertainty of Wind Turbine Power Based on Relevance Vector Machine[J]. Energy Procedia, 2019, 158:229-236.
[111] 乔颖, 鲁宗相, 吴问足. 考虑误差时序-条件性质的短期风电功率概率预测[J]. 电网技术, 2020, 44(7):2529-2537. QIAO YING, LU Zongxiang, WU Wenzu. Day-ahead wind power probabilistic forecast considering conditional dependency and temporal correlation[J]. Power System Technology, 2020, 44(7):2529-2537.
[112] 余沣, 董存, 王铮, 等. 考虑山东近海不同风能天气特征的风电功率区间预测模型[J]. 电网技术, 2020, 44(4):1238-1247. YU Feng, DONG Cun, WANG Zheng, et al. Wind power interval forecasting model considering different wind energy weather characteristics in Shandong offshore areas[J]. Power System Technology, 2020, 44(4):1238-1247.
[113] ZHANG J H, YAN J, INFIELD D, et al. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model[J]. Applied Energy, 2019, 241:229-244.
[114] XUE H, JIA Y C, WEN P, et al. Using of improved models of Gaussian Processes in order to Regional wind power forecasting[J]. Journal of Cleaner Production, 2020, 262. https://doi.org/10.1016/j.jclepro.2020.121391.
[115] AHMADPOUR A, FARKOUSH S G. Gaussian models for probabilistic and deterministic wind power prediction:Wind farm and regional[J]. International Journal of Hydrogen Energy, 2020, 45(51):27779-27791.
[116] WANG H Z, LI G Q, WANG G B, et al. Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied Energy, 2017, 188:56-70.
[117] JORDAN N, KIRAN B, RAJITHA M, et al. Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction[J]. Energy, 2020, 190:116273.
[118] OPTIS M, PERR-SAUER J. The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production[J]. Renewable and Sustainable Energy Reviews, 2019, 112:27-41.
[119] MISHRA S, BORDIN C TAHARAGUCHI K, et al. Comparison of deep learning models for multivariate prediction of time series wind power generation and temperature[J]. Energy Reports, 2020, 6(Suppl.3):273-286.
[120] 熊音笛, 刘开培, 秦亮, 等. 基于时序数据动态天气划分的短期风电功率预测方法[J]. 电网技术, 2019, 43(9):3353-3359. XIONG Yindi, LIU Kaipei, QIN Liang, et al. Short-term wind power prediction method based on dynamic wind power weather division of time sequence data[J]. Power System Technology, 2019, 43(9):3353-3359.
[121] 吴阳阳, 黄礼波, 林建平, 等. 风电功率预测系统评价方法研究[J]. 应用能源技术, 2019(12):38-44. WU Yangyang, HUANG Libo, LIN Jianping, et al. Research on evaluation method of wind power prediction system[J]. Applied Energy Technology, 2019(12):38-44.
[122] YUAN P, MA X, ZHANG X C, et al. A comprehensive error evaluation method for wind power forecasting and its application[C]//20205th Asia Conference on Power and Electrical Engineering (ACPEE), 2020:1977-1982.
[123] SHEN X J, FU X J, ZHOU C C, et al. A combined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1):46-54.
[124] 杨茂, 翟冠强, 李大勇, 等. 基于风速升降特性及支持向量机理论的异常数据重构算法[J]. 电力系统保护与控制, 2018, 46(16):31-37. YANG Mao, ZHAI Guanqiang, LI Dayong, et al. An algorithm of abnormal data reconstruction based on RISE-FALL-feature of the wind speed and support vector machine[J]. Power System Protection and Control, 2018, 46(16):31-37.
[125] YE X, LU Z X, QIAO Y, et al. Identification and correction of outliers in wind farm time series power data[J]. IEEE Transactions on Power Systems, 2016, 31(6):4197-4205.
[126] 胡阳, 乔依林. 基于置信等效边界模型的风功率数据清洗方法[J]. 电力系统自动化, 2018, 42(15):18-23. HU Yang, QIAO Yilin. Wind power data cleaning method based on confidence equivalent boundary model[J]. Automation of Electric Power Systems, 2018, 42(15):18-23.
[127] 杨茂, 翟冠强, 苏欣. 基于风特征分析的风电机组异常数据识别算法[J]. 中国电机工程学报, 2017, 37(增刊1):144-151. YANG Mao, ZHAI Guanqiang, SU Xin, et al. An algorithm for abnormal data identification of wind turbine based on wind characteristic analysis[J]. Proceedings of the CSEE, 2017, 37(Suppl.1):144-151.
[128] 娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化, 2016, 40(10):116-121. LOU Jianlou, XU Jia, LU Heng, et al. Wind turbine data cleaning algorithm based on power curve[J]. Automation of Electric Power Systems, 2016, 40(10):116-121.
[129] 杨茂, 杨春霖, 杨琼琼, 等. 计及风向信息的风电功率异常数据识别研究[J]. 太阳能学报, 2019, 40(11):3265-3272. YANG Mao, YANG Chunlin, YANG Qiongqiong, et al. Study on data recognition of wind power abnormality considering wind direction information[J]. Acta Energiae Solaris Sinica, 2019, 40(11):3265-3272.
[130] 杨茂, 杨琼琼. 基于云分段最优熵算法的风电机组异常数据识别研究[J]. 中国电机工程学报, 2018, 38(8):2294-2301. YANG Mao, YANG Qiongqiong. The identification research of the wind turbine abnormal data based on the cloud segment optimal entropy algorithm[J]. Proceedings of the CSEE, 2018, 38(8):2294-2301.
[131] HAN S, QIAO Y H, YAN P, et al. Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles[J]. Renewable Energy, 2020, 157:190-203.
[132] ZHAO Y G, YE L, WANG W S, et al. Data-driven correction approach to refine power curve of wind farm under wind curtailment[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1):95-105.
[133] 邹同华, 高云鹏, 伊慧娟, 等. 基于Thompson tau-四分位和多点插值的风电功率异常数据处理[J]. 电力系统自动化, 2020, 44(15):156-165. ZOU Tonghua, GAO Yunpeng, YIN Huijuan, et al. Processing of wind power abnormal data based on thompson tau-quartile and multi-point interpolation[J]. Automation of Electric Power Systems, 2020, 44(15):156-165.
[134] SU Y H, CHEN F, LIANG G Y, et al. Wind power curve data cleaning algorithm via image thresholding[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019:1198-1203.
[135] LONG H., SANG L W, WU Z J, et al. Image-based abnormal data detection and cleaning algorithm via wind power curve[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2):938-946.
[136] LIN Q S, LI C X. Kriging based sequence interpolation and probability distribution correction for gaussian wind field data reconstruction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205:104340.
[137] QU F M, LIU J H, MA Y J, et al. A novel wind turbine data imputation method with multiple optimizations based on GANs[J]. Mechanical Systems and Signal Processing, 2020, 139:106610.
[138] HE Y Y, LI H Y, WANG S, et al. Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression[J]. Neurocomputing, 2021, 420:121-137.
[139] 杨茂, 马剑. 基于Copula理论的风电功率缺失数据补齐方法研究[J]. 电测与仪表, 2018, 55(3):13-19. YANG Mao, MA Jian. Study on wind power data completion method based on Copula theory[J]. Electrical Measurement & Instrumentation, 2018, 55(3):13-19.
[140] 朱倩雯, 叶林, 赵永宁, 等风电场输出功率异常数据识别与重构方法研究[J]. 电力系统保护与控制, 2015, 43(3):38-45. ZHU Qianwen, YE Lin, ZHAO Yongning, et al. Methods for elimination and reconstruction of abnormal power data in wind farms[J]. Power System Protection and Control, 2015, 43(3):38-45.
[141] 张东英, 李伟花, 刘燕华, 等. 风电场有功功率异常运行数据重构方法[J]. 电力系统自动化, 2014, 38(5):14-18, 24. ZHANG Dongying, LI Weihua, LIU Yanhua, et al. Reconstruction method of active power historical operating data for wind farm[J]. Automation of Electric Power Systems, 2014, 38(5):14-18, 24.
[142] LIU H, CHEN C. Data processing strategies in wind energy forecasting models and applications:A comprehensive review[J]. Applied Energy, 2019, 249:392-408.
[143] ZHAO X Y, JIANG N, LIU J F, et al. Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework[J]. Energy Conversion and Management, 2020, 203:112239.
[144] LIU X J, ZHANG H, KONG X B, et al. Wind speed forecasting using deep neural network with feature selection[J]. Neurocomputing, 2020, 397:393-403.
[145] 杨茂, 马剑, 李大勇, 等. 基于熵权综合关联度数据挖掘的风电功率实时预测研究[J]. 太阳能学报, 2019, 40(12):3578-3585. YANG Mao, MA Jian, LI Dayong, et al. Research on real time prediction of wind power based on entropy weight comprehensive association data mining[J]. Acta Energiae Solaris Sinica, 2019, 40(12):3578-3585.
[146] 庞传军, 余建明, 张波, 等. 基于偏依赖量的风功率影响因素相关性分析方法[J]. 电网技术, 2021, 2:552-558. PANG Chuanjun, YU Jianming, ZHANG Bo, et al. Correlation analysis of factors affecting wind power based on partial dependence[J]. Power System Technology, 2021, 2:552-558.
[147] LIN Z, LIU X L. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network[J]. Energy, 2020, 201:117693.

基金

国家自然科学基金(51305377,51975504)、湖南省教育厅(19B539)和湖南省自然科学基金(2021JJ30676)资助项目
PDF(645 KB)

1816

Accesses

0

Citation

Detail

段落导航
相关文章

/