下肢康复机器人人机耦合动力学建模和主动柔顺控制

卢浩, 王洪波, 冯永飞

机械工程学报 ›› 2022, Vol. 58 ›› Issue (7) : 32-43.

PDF(891 KB)
PDF(891 KB)
机械工程学报 ›› 2022, Vol. 58 ›› Issue (7) : 32-43. DOI: 10.3901/JME.2022.07.032
机器人及机构学

下肢康复机器人人机耦合动力学建模和主动柔顺控制

  • 卢浩1,2,3,4, 王洪波1,2,4, 冯永飞5
作者信息 +

Human-machine Coupling Dynamics Modeling and Active Compliance Control of Lower Limb Rehabilitation Robot

  • LU Hao1,2,3,4, WANG Hongbo1,2,4, FENG Yongfei5
Author information +
文章历史 +

摘要

针对多关节下肢康复机器人非线性人机交互作用力影响训练过程中舒适度和安全性的问题,提出一种人机耦合动力学建模方法和主动柔顺控制策略。结合脑卒中发病初-中期康复训练特点和降低髋关节输出功率的要求,确定出坐卧式下肢康复机器人自由度配置、自平衡结构原理,并完成具体模型设计。基于简化的人体肌骨模型,考虑人机耦合方式,确定出人机交互作用力模型,进一步给出考虑自平衡结构影响的人机耦合动力学模型。引入环境刚度模拟患者踩踏在不同路面的接触力效果,利用动力学前馈进行关节期望力矩补偿控制,并通过李雅普诺夫定理判定控制系统的稳定性。通过实验验证了轨迹跟踪、力跟踪的准确性,进一步通过临床试验,92.2%的脑卒中患者病情得到缓解,验证了研究内容的可行性和安全性。

Abstract

Aiming at the problem that the nonlinear human-computer interaction force of lower limb rehabilitation robot affects the comfort and safety of training process, a human-computer coupling dynamic modeling method and a dynamic feedforward control strategy are proposed. Combined with the characteristics of early rehabilitation training of stroke and the requirements of reducing hip output power, the degree of freedom configuration, self-balancing structure principle and specific model design scheme are determined. Based on the simplified human muscle bone model and considering the man-machine coupling mode, the man-machine interaction force model is determined, and the man-machine coupling dynamic model considering the influence of self-balancing structure is further given. The environmental stiffness is introduced to simulate the contact force effect of different soft and hard roads, the dynamic feedforward is used to carry out the feedforward compensation control of joint expected torque, and the stability of the control system is determined by Lyapunov method. The accuracy of trajectory tracking and force tracking were verified by experiments. Further, through clinical trials, 92.2% of stroke patients are relieved, which verifies the feasibility and safety of this research.

关键词

下肢康复机器人 / 人机耦合动力学 / 柔顺控制 / 临床试验

Key words

lower limb rehabilitation robot / human-machine coupling dynamics / compliance control / clinical trial

引用本文

导出引用
卢浩, 王洪波, 冯永飞. 下肢康复机器人人机耦合动力学建模和主动柔顺控制[J]. 机械工程学报, 2022, 58(7): 32-43 https://doi.org/10.3901/JME.2022.07.032
LU Hao, WANG Hongbo, FENG Yongfei. Human-machine Coupling Dynamics Modeling and Active Compliance Control of Lower Limb Rehabilitation Robot[J]. Journal of Mechanical Engineering, 2022, 58(7): 32-43 https://doi.org/10.3901/JME.2022.07.032

参考文献

[1] 胡祎,邸英莲,顾颦颉. 脑卒中肢体功能障碍病人恢复期中西医结合康复护理技术研究进展[J]. 全科护理,2016,14(29):3041-3044. HU Yi,DI Yinglian,GU Pinjie. Research progress of rehabilitation nursing technology of integrated traditional Chinese and Western medicine in convalescent patients with limb dysfunction after stroke[J]. General Nursing,2016,14(29):3041-3044.
[2] 陈源,张继荣. 脑卒中患者步行功能障碍的康复现状[J]. 中国康复,2017,32(1):70-73. CHEN Yuan,ZHANG Jirong. Rehabilitation status of walking dysfunction in stroke patients[J]. China Rehabilitation,2017,32(1):70-73.
[3] SVETLANA P,JESSICA M,MARGARET S,et al. Association of spasticity and motor dysfunction in chronic stroke[J]. Annals of Physical and Rehabilitation Medicine,2019,62(6):397-402.
[4] BARBOSA A,CARVALHO J,GONÇALVES R. Cable-driven lower limb rehabilitation robot[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018(40):245-262.
[5] 吕慧颐,杨萍,乔婕. 延伸护理对脑卒中病人ADL能力的影响[J]. 护理研究,2014(15):1882-1883. LÜ Huiyi,YANG Ping,QIAO Jie. Effect of extended nursing on ADL ability of stroke patients[J]. Nursing Research,2014(15):1882-1883.
[6] 吴志远,李坤彬,娄书伟,等. 下肢康复机器人训练对脑卒中患者运动及平衡功能的影响[J]. 康复学报,2020,30(2):114-118. WU Zhiyuan,LI Kunbin,LOU Shuwei,et al. Effect of lower limb rehabilitation robot training on motor and balance function of stroke patients[J]. Journal of Rehabilitation,2020,30(2):114-118.
[7] 侯增广,赵新刚,程龙,等. 康复机器人与智能辅助系统的研究进展[J]. 自动化学报,2016,42(12):1765-1779. HOU Zenguang,ZHAO Xingang,CHENG Long,et al. Research progress of rehabilitation robot and intelligent assistant system[J]. Journal of Automation,2016,42(12):1765-1779.
[8] QIN Feifi,ZHAO Han,ZHEN Shengchao. Lyapunov based robust control for tracking control of lower limb rehabilitation robot with uncertainty[J]. International Journal of Control Automation and Systems,2020,18(6):76-84.
[9] WANG Yanlin,WANG Keyi,WANG Wanli,et al. Appraise and analysis of dynamical stability of cable-driven lower limb rehabilitation training robot[J]. Journal of Mechanical Science and Technology,2019,33(10),5461-5472.
[10] 赵新刚,谈晓伟,张弼. 柔性下肢外骨骼机器人研究进展及关键技术分析[J]. 机器人,2020,42(3):365-384. ZHAO Xingang,TAN Xiaowei,ZHANG Bi. Research progress and key technology analysis of flexible lower limb exoskeleton robot[J]. Robot,2020,42(3):365-384.
[11] 胡进,侯增广,陈翼雄,等. 下肢康复机器人及其交互控制方法[J]. 自动化学报,2014,40(11):2377-2390. HU Jin,HOU Zengguang,CHEN Yixiong,et al. Lower limb rehabilitation robot and its interactive control method[J]. Journal of Automation,2014,40(11):2377-2390.
[12] 陈子明,尹涛,潘泓,等. 一种三自由度并联踝关节康复机构[J]. 机械工程学报,2020,56(21):70-78. CHEN Ziming,YIN Tao,PAN Hong,et al. A three degree of freedom parallel ankle rehabilitation mechanism[J]. Journal of Mechanical Engineering,2020,56(21):70-78.
[13] DIAZ I,GIL J,SANCHEZ E. Lower-limb robotic rehabilitation:literature review and challenges[J]. Journal of Robotics,2011,12(8):1-11.
[14] SCHMITT C,MÉTRAILLER P,AL-KHODAIRY A,et al. The Motion Maker™:A rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation[C]//8th Vienna International Workshop on Functional Electrical Stimulation. Vienna,Austria,2004:3321-3326.
[15] BOURI M,ABDI E,Bleuler H,et al. Lower limbs robotic rehabilitation case study with clinical trials[J]. Mechanisms and Machine Science,2014,20(6):31-44.
[16] KUBOKAWA T,AOKI C,IIDA S,et al. Muscle activity during gait using the ankle-assist device cocoroe:A basic study involving healthy participants[J]. Journal of Physical Therapy Science,2019,34(2):253-257.
[17] FENG Yongfei,WANG Hongbo,LU Tingting,et al. Teaching training method of a lower limb rehabilitation robot[J]. International Journal of Advanced Robotic Systems,2016,13(2):57-68.
[18] WANG Xincheng,WANG Hongbo,HU Xinyu,et al. Adaptive direct teaching control with variable load of the lower limb rehabilitation robot (LLR-II)[J]. Machines,2021,9(8):142-153.
[19] 黄高,张伟民,MARCO C,等,一种新的康复与代步外骨骼机器人研究[J]. 自动化学报,2016,42(12):1933-1942. HUANG G,ZHANG W,MARCO C,et al. Research on a new rehabilitation and walking exoskeleton robot[J]. Journal of Automation,2016,42(12):1933-1942.
[20] LEE C,KIM J,KIM S. Human force observation and assistance for lower limb rehabilitation using wire-driven series elastic actuator[J]. Mechatronics,2018,55:13-26.
[21] YANG Tao,GAO Xueshan,DAI Fuquan. New hybrid AD methodology for minimizing the total amount of information content:A case study of rehabilitation robot design[J]. Chinese Journal of Mechanical Engineering,2020,33(6):1-10.
[22] 李海源,刘畅,严鲁涛,等. 上肢外骨骼机器人的阻抗控制与关节试验研究[J]. 机械工程学报,2020,56(19):200-208. LI Haiyuan,LIU Chang,YAN Lutao,et al. Impedance control and joint experimental research of upper limb exoskeleton robot[J]. Journal of Mechanical Engineering,2020,56(19):200-208.
[23] 史小华,王洪波,孙利,等. 外骨骼型下肢康复机器人结构设计与动力学分析[J]. 机械工程学报,2014,50(3):41-49. SHI Xiaohua,WANG Hongbo,SUN Li,et al. Structural design and dynamic analysis of exoskeleton type lower limb rehabilitation robot[J]. Journal of Mechanical Engineering,2014,50(3):41-49.
[24] 李鹏峰. 基于人体肌骨模型截瘫患者用康复机器人控制系统研究[D]. 北京:中国科学院自动化研究所,2010. LI Pengfeng. Research on rehabilitation robot control system for paraplegic patients based on human muscle bone model[D]. Beijing:Institute of Automation,Chinese Academy of Sciences,2010.
[25] SHI Di,ZHANG Wuxiang,ZHANG Wei,et al. A review on lower limb rehabilitation exoskeleton robots[J]. Chinese Journal of Mechanical Engineering,2019,32(4):2-12.
[26] AMICI C,RAGNI F,GHIDONI M,et al. Multi-sensor validation approach of an end-effector-based robot for the rehabilitation of the upper and lower limb[J]. Electronics. 2020,9(10):1751-1762.
[27] JURGEN S. A local learning algorithm for dynamic feedforward and recurrent networks[J]. Connection Science,1989,1(4):403-412.
[28] 陈赛旋. 协作机器人零力控制与碰撞检测技术研究[D]. 合肥:中国科学技术大学,2018. CHEN Saixuan. Research on zero force control and collision detection technology of cooperative robot[D]. Hefei:University of Science and Technology of China,2018.
[29] WANG Hongbo,FENG Yongfei,YU Hongnian. Mechanical design and trajectory planning of a lower limb rehabilitation robot with a variable workspace[J]. International Journal of Advanced Robotic Systems. 2018,15(3):1-13.
[30] 国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 17245-2004,成年人人体惯性参数[S]. 北京:中国标准出版社,2004. General Administration of Quality Supervision,Inspection and Quarantine,China National Standardization Administration Committee. GB/T 17245-2004,Adult human body inertia parameters[S]. Beijing:China Standards Press,2004
[31] 国家技术监督局,中国国家标准化管理委员会. GB/T 10000-1988,中国成年人人体尺寸[S]. 北京:中国标准出版社,1988. State Administration of Technical Supervision of China,China National Standardization Administration Committee. GB/T 10000-1988,Human body size of Chinese adults[S]. Beijing:China Standard Press,1988.

基金

国家重点研发计划(2019YFB1312500)和国家自然科学基金联合基金(U1913216)资助项目。
PDF(891 KB)

1353

Accesses

0

Citation

Detail

段落导航
相关文章

/