折纸结构驱动技术的研究进展

胡楠, 陈花玲

机械工程学报 ›› 2020, Vol. 56 ›› Issue (15) : 118-128.

PDF(1320 KB)
PDF(1320 KB)
机械工程学报 ›› 2020, Vol. 56 ›› Issue (15) : 118-128. DOI: 10.3901/JME.2020.15.118
机器人及机构学

折纸结构驱动技术的研究进展

  • 胡楠1,2, 陈花玲1,2
作者信息 +

Progress in Actuating Technology of Origami Structure

  • HU Nan1,2, CHEN Hualing1,2
Author information +
文章历史 +

摘要

折纸结构因具有强大的折展能力以及在应用中制造装配简单等优势,为许多复杂工程问题的解决提供了新思路,因此吸引了航天、医疗、机器人等领域的不少学者们对其开展研究。在折纸技术研究领域,折纸结构的驱动技术是其中一个关键技术。按照驱动原理的不同,将折纸驱动技术分为气动驱动、机械式驱动、活性材料驱动三大类,然后分别对其国内外研究现状进行归纳和分析,并对各种驱动方法的优缺点、适用场合等进行对比,最后重点指出了基于活性材料的折纸结构驱动技术研究面临的问题以及未来的发展趋势。

Abstract

Origami structure has many advantages, such as strong folding ability and simple manufacturing and assembly in application, and it provides many new ideas for solving many complex engineering problems. Therefore, origami attracts many scholars in aerospace, medical, robotics and other fields to research. In the research of origami, the actuation technology of origami structure is one of the important technologies. According to the difference in actuation principle, the origami actuation technology is divided into three categories, and they are pneumatic actuating, mechanical structure actuating and active material actuating. The current research situation of origami actuation technology is summarized and analyzed, and the advantages, disadvantages and suitable occasions of different methods are compared. Finally, the problems faced by the research of origami structure actuation technology based on active materials and the development trends in the future are put forward.

关键词

折纸 / 驱动 / 气动 / 机械式结构 / 活性材料

Key words

origami / actuation / pneumatic / mechanical structure / active material

引用本文

导出引用
胡楠, 陈花玲. 折纸结构驱动技术的研究进展[J]. 机械工程学报, 2020, 56(15): 118-128 https://doi.org/10.3901/JME.2020.15.118
HU Nan, CHEN Hualing. Progress in Actuating Technology of Origami Structure[J]. Journal of Mechanical Engineering, 2020, 56(15): 118-128 https://doi.org/10.3901/JME.2020.15.118

参考文献

[1] LANG R J. The science of origami[J]. Physics World,2007,20(2):30-31.
[2] TACHI T. Origamizing polyhedral surfaces[J]. IEEE Transactions on Visualization & Computer Graphics,2010,16(2):298-311.
[3] DEMAINE E D. Folding and unfolding linkages,paper,and polyhedra[M]. Berlin Heidelberg:Springer,2000.
[4] MUELLER S,KRUCK B,BAUDISCH P. Laser Origami:Laser-cutting 3D objects[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,New York:ACM,2013:2585-2592.
[5] ZIRBEL S A,WILSON M E,MAGLEBY S P,et al. An origami-inspired self-deployable array[C]//ASME Smart Materials,Adaptive Structures and Intelligent Systems,New York:ASME,2013:V001T01A026.
[6] RANDALL C L,GULTEPE E,GRACIAS D H. Self-folding devices and materials for biomedical applications[J]. Trends in Biotechnology,2012,30(3):138-146.
[7] FERNANDES R,GRACIAS D H. Self-folding polymeric containers for encapsulation and delivery of drugs[J]. Advanced Drug Delivery Reviews,2012,64(14):1579-1589.
[8] WANG Yanhu,GE Lei,WANG Panpan,et al. A three-dimensional origami-based immuno-biofuel cell for self-powered,low-cost,and sensitive point-of-care testing[J]. Chemical Communications,2014,50(16):1947-1949.
[9] EDMONDSON B,BOWEN L,GRAMES C,et al. Oriceps:Origami-inspired forceps[C]//ASME 2013 Conference on Smart Materials,Adaptive Structures and Intelligent Systems,American Society of Mechanical Engineers,New York:ASME,2013:V001T01A027.
[10] KURIBAYASHI K,TSUCHIYA K,YOU Z,et al. Self-deployable origami,stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Materials Science & Engineering A,2006,419(1):131-137.
[11] YOON C,XIAO R,PARK J,et al. Functional stimuli responsive hydrogel devices by self-folding[J]. Smart Materials and Structures,2014,23(9):094008.
[12] LEE D Y,KIM J S,KIM S R,et al. The deformable wheel robot using magic-ball origami structure[C]//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York:ASME,2013:V06BT07A040.
[13] WHITE P J,LATSCHA S,SCHLAEFER S,et al. Dielectric elastomer bender actuator applied to modular robotics[C]//IEEE International Conference on Intelligent Robots and Systems,Piscataway:IEEE,2011:408-413.
[14] HOOVER A M,FEARING R S. Fast scale prototyping for folded millirobots[C]//IEEE International Conference on Robotics and Automation,Piscataway:IEEE,2008:886-892.
[15] LEE J Y,KANG B B. Development of a multi-functional soft robot (snUMaX) and performance in robosoft grand challenge[J]. Frontiers in Robotics and AI,2016,3:UNSP63.
[16] SNYDER M P,SANDERS B,EASTEP F E,et al. Vibration and flutter characteristics of a folding wing[J]. Journal of Aircraft,2009,46(3):791-799.
[17] BUNGET G,SEELECKE S. BATMAV:A 2-DOF bio-inspired flapping flight platform[J]. Proceedings of SPIE the International Society for Optical Engineering,2010,7643(2):379-380.
[18] POUNDS P E. Paper plane:Towards disposable low-cost folded cellulose-substrate UAVs[C]//Proceedings of Australian Robotics and Automation Association,Sydney:ARAA,2012:143-151.
[19] MA Jiayao,YOU Zhong. The origami crash box[J]. Origami,2011(5):277-290.
[20] MA Jiayao,YOU Zhong. A novel origami crash box with varying proles[C]//ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York:ASME,2013:V06BT07A048.
[21] ZHOU Caihua,WANG Bo,MA Jiayao,et al. Dynamic axial crushing of origami crash boxes[J]. International Journal of Mechanical Sciences,2016,118:1-12.
[22] TOLMAN S S,DELIMONT I L,HOWELL L L,et al. Material selection for elastic energy absorption in origami-inspired compliant corrugations[J]. Smart Materials and Structures,2014,23(9):094010.
[23] WU Weina,YOU Zhong. A solution for folding rigid tall shopping bags[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2011,467(2133):2561-2574.
[24] CHENG Qianqian,SONG Zemin,MA Teng,et al. Folding paper-based lithium-ion batteries for higher areal energy densities[J]. Nano Letters,2013,13(10):4969-4974.
[25] SONG Zemin,MA Teng,TANG Rui,et al. Origami lithium-Ion batteries[J]. Nature Communications,2014(5):1810-1821.
[26] NAM I,KIM G P,PARK S,et al. All-solid-state,origami-type foldable super capacitor chips with integrated series circuit analogues[J]. Energy and Environmental Science,2014,7(3):1095-1102.
[27] MIYASHITA S,MEEKER L,TOLLEY M T,et al. Self-folding miniature elastic electric devices[J]. Smart Materials and Structures,2014,23(9):094005.
[28] OCAMPO J,ZANARDI M,VACCARO P O,et al. Characterization of GaAs-based micro-origami mirrors by optical actuation[J]. Microelectronic Engineering,2004,73(1):429-434.
[29] EARLY J T,HYDE R,BARON R L. Twenty-meter space telescope based on diffractive Fresnel lens[C]//SPIE 48th Annual Meeting Cardiff:SPIE,2004:148-156.
[30] THRALL A,QUAGLIA C. Accordion shelters:A historical review of origami-like deployable shelters developed by the US military[J]. Engineering Structures,2014(59):686-692.
[31] MARTIN F,THRALL A. Honeycomb core sandwich panels for origami-inspired deployable shelters:Multi-objective optimization for minimum weight and maximum energy efficiency[J]. Engineering Structures,2014(69):158-167.
[32] QUAGLIA C,BALLARD Z,THRALL A. Parametric modeling of an air-liftable origami-inspired deployable shelter with a novel erection strategy[J]. Mobile and Rapidly Assembled Structures IV,2014(136):23-33.
[33] FUCHI K,DIAZ A R,ROTHWELL E J,et al. An origami tunable metamaterial[J]. Journal of Applied Physics,2012,111(8):2075-2084.
[34] SCHENK M,GUEST S D. Geometry of Miura-folded metamaterials[J]. PNAS,2013,110(9):3276-3281.
[35] MARTINEZ R V,FISH C R,CHEN X,et al. Elastomeric origami:Programmable paper-elastomer composites as pneumatic actuators[J]. Advanced Function Material,2012(22):1376-1384.
[36] FANG Hongbin,ZHANG Yetong,WANG K W. Origami-based earthworm-like locomotion robots[J]. Bioinspiration and Biomimetics,2017,12:065003.
[37] LI S,VOGT D M,RUS D,et al. Fluid-driven origami-inspired artificial muscles[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(50):13132-13137.
[38] KIM S J,LEE D Y,JUNG G P,et al. An origami-inspired,self-locking robotic arm that can be folded flat[J]. Science Robotics,2018,3(16):eaar2915.
[39] ZHANG Ketao,QIU Chen,DAI Jiansheng. An origami parallel structure integrated deployable continuum robot[C]//ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York:ASME,2015:V05BT08A032.
[40] JEONG D,LEE K. Design and analysis of an origami-based three-finger manipulator[J]. Robotica,2018,36:261-274.
[41] KAMRAVA S,MOUSANEZHAD D,FELTON S M,et al. Programmable Origami strings[J]. Advanced Materials Technologies,2018:1700276.
[42] TOLLEY M T,FELTON S M,MIYASHITA S,et al. Self-folding origami:Shape memory composites activated by uniform heating[J]. Smart Materials and Structures,2014,23(9):094006.
[43] FELTON S,TOLLEY M,DEMAINE E,et al. A method for building self-folding machines[J]. Science,2014,345(6197):644-646.
[44] PAIK J K,AN B,RUS D,et al. Robotic origamis:Self-morphing modular robot[J]. ICMC,2012:206919.
[45] ONAL C D,WOOD R J,RUS D. An origami-inspired approach to worm robots[J]. IEEE/ASME Trans. Mechatron,2013,18:430-438.
[46] MIYASHITA S,GUITRON S,LUDERSDORFER M,et al. An untethered miniature origami robot that self-folds,walks,swims,and degrades[C]//IEEE 2015 International Conference on Robotics and Automation,Piscataway:IEEE,2015:1490-1496.
[47] MIYASHITA S,GUITRON S,LI S,et al. Robotic metamorphosis by origami exoskeletons[J]. Science Robotics,2017,2:eaao4369.
[48] BRUCE P L,AMEYA N,RANDALL W. Effect of metal ion type on the movement of hydrogel actuator based On catechol-metal ion coordination chemistry[J]. Sensors and Actuators B,2016(227):248-254.
[49] OKUZAKI H,SAIDO T,SUZUKI H,et al. A biomorphic origami actuator fabricated by folding a conducting paper[J]. Journal of Physics:Conference Series,2008,127:012001.
[50] HIRAI T,KOBAYASHI S,HIRAI M,et al. Bending induced by creeping of plasticized poly(vinyl chloride) gel[J]. Proceedings of SPIE-The International Society for Optical Engineering,2004,5385:433-441.
[51] ZHAO Jianwen,NIU Junyang,MCCOUL D,et al. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint[J]. Applied Physics Letters,2015,106(13):133504.
[52] BASSIK N,BRAFMAN A,ZARAFSHAR A M,et al. Enzymatically triggered actuation of miniaturized tools[J]. Journal of the American Chemical Society,2010,132(46):16314-16317.
[53] KWAN K W,LI S J,HAU N Y,et al. Light-stimulated actuators based on nickel hydroxide-oxyhydroxide[J]. Science Robotics,2018,3:eaat4051.
[54] AHMED S,LAUFF C,CRIVARO A,et al. Multi-field responsive origami structures:Preliminary modeling and experiments[C]//ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York:ASME,2013,DETC-12405:V06BT07A028.
[55] LAGOUDAS D C. Shape memory alloys:Modeling and engineering applications[M]. Berlin Heidelberg:Springer,2008.
PDF(1320 KB)

1478

Accesses

0

Citation

Detail

段落导航
相关文章

/