考虑力补偿的2(3PUS+S)并联机器人主动关节同步控制

山显雷, 程刚, 陈世彪

机械工程学报 ›› 2019, Vol. 55 ›› Issue (11) : 46-52.

PDF(1370 KB)
PDF(1370 KB)
机械工程学报 ›› 2019, Vol. 55 ›› Issue (11) : 46-52. DOI: 10.3901/JME.2019.11.046
特邀专栏:共融机器人

考虑力补偿的2(3PUS+S)并联机器人主动关节同步控制

  • 山显雷1,2, 程刚1, 陈世彪1
作者信息 +

Active Joint Synchronization Control of a 2(3PUS+S) Parallel Robot with Consideration of Force Compensation

  • SHAN Xianlei1,2, CHENG Gang1, CHEN Shibiao1
Author information +
文章历史 +

摘要

在并联机器人基于关节空间的控制中,运动控制精度不仅受结构误差及运动副摩擦的影响,由于闭链结构特点,还受主动支链的耦合及运动协调性的影响。以一种2(3PUS+S)并联机器人为研究对象,在前期误差及摩擦补偿研究的基础上,开展主动关节的同步控制研究。通过建立基于关节空间的动力学模型确定主动关节由于惯量耦合引起的耦合力,以主动支链间的运动协调性为约束定义同步误差,并基于增广PD控制理论设计主动关节的同步控制策略,在进行结构误差修正的基础上以前馈补偿方式对耦合力及摩擦力进行补偿,基于控制试验验证了所设计控制策略的有效性。提出的考虑力补偿的主动关节同步控制策略对于改善并联机器人的运动控制精度具有重要作用。

Abstract

For joint space control of parallel robots, motion control accuracy is not only affected by the structural error and friction, but also by the coupling and motion coordination of the active joints due to the characteristics of the closed chain structure. Studies on active joint synchronization control of a 2(3PUS+S) parallel robot are conducted based on the early study on error and friction compensation. With the help of an established dynamic model based on joint space, the coupling force caused by inertia coupling is calculated. The synchronization error is defined by the motion coordination between active joints, and then, active joint synchronization control strategy is designed based on augmented PD control theory. On the base of the correction of structural error, the coupling force and friction are compensated by feedforward compensation. The last but not the least, the effectiveness of the control strategy is verified based on the control experiments. The proposed active joint synchronization control strategy with consideration of force compensation is of great importance to improve the motion control accuracy of parallel robots.

关键词

并联机器人 / 动力学 / 关节空间 / 同步控制 / 力补偿

Key words

parallel robot / dynamics / joint space / synchronization control / force compensation

引用本文

导出引用
山显雷, 程刚, 陈世彪. 考虑力补偿的2(3PUS+S)并联机器人主动关节同步控制[J]. 机械工程学报, 2019, 55(11): 46-52 https://doi.org/10.3901/JME.2019.11.046
SHAN Xianlei, CHENG Gang, CHEN Shibiao. Active Joint Synchronization Control of a 2(3PUS+S) Parallel Robot with Consideration of Force Compensation[J]. Journal of Mechanical Engineering, 2019, 55(11): 46-52 https://doi.org/10.3901/JME.2019.11.046

参考文献

[1] LIU H T,HUANG T,CHETWYND D G,et al. Stiffness modeling of parallel mechanisms at limb and joint/link levels[J]. IEEE. T. ROBOT.,2017,33(3):734-741.
[2] LU Y,DAI Z H,YE N J. Stiffness analysis of parallel manipulators with linear limbs by considering inertial wrench of moving links and constrained wrench[J]. Robot. Cim-Int. Manuf.,2017,46:58-67.
[3] 吴存存,杨桂林,陈庆盈,等. 四自由度2PPPaR并联机构运动学及性能分析[J]. 机械工程学报,2018,54(3):36-45. WU Cuncun,YANG Guilin,CHEN Qingying,et al. Kinematic and performance analysis of a 4-DOF 2PPPaR parallel manipulator[J]. Journal of Mechanical Engineering,2018,54(3):36-45.
[4] YANG C,LI Q C,CHEN Q H,et al. Elastostatic stiffness modeling of overconstrained parallel manipulators[J]. Mech. Mach. Theory,2018,122:58-74.
[5] SHAO Z F,MO,J,TANG,X Q,et al. Transmission index research of parallel manipulators based on matrix orthogonal degree[J]. Chin. J. Mech. Eng-En.,2017,30(6):1396-1405.
[6] CAO W A,YANG D H,DING H F. A method for stiffness analysis of overconstrained parallel robotic mechanisms with Scara motion[J]. Robot. Cim-Int. Manuf.,2018,49:426-435.
[7] 沈惠平,邓嘉鸣,孟庆梅,等. 少输入-多输出并联机构的设计方法及其应用[J]. 机械工程学报,2018,54(1):223-232. SHEN Huiping,DENG Jiaming,MENG Qingmei,et al. Design methods and applications for the fewer input-more uutput parallel mechanisms[J]. Journal of Mechanical Engineering,2018,54(1):223-232.
[8] XU P,CHEUNG C F,LI B,et al. Kinematics analysis of a hybrid manipulator for computer controlled ultra-precision freeform polishing[J]. Robot. Cim-Int. Manuf.,2017,44:44-56.
[9] YANG X,LIU H T,XIAO J L,et al. Continuous friction feedforward sliding mode controller for a TriMule hybrid robot[J]. IEEE-ASME. T. Mech.,2018,23(4):1673-1683.
[10] CHUNG W K,FU L C,KROGER T. Handbook of Robotics 2nd edition,Chapter 8 on "Motion Control"[M]. Springer,2016.
[11] FU J X,GAO F,CHEN W X,et al. Kinematic accuracy research of a novel six-degree-of-freedom parallel robot with three legs[J]. Mech. Mach. Theory,2016,102:86-102.
[12] CHEN G L,KONG L Y,LI Q C,et al. Complete,minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula[J]. Mech. Mach. Theory,2018,121:844-856.
[13] SHANG W W,CONG S,KONG F R. Identification of dynamic and friction parameters of a parallel manipulator with actuation redundancy[J]. Mechatronics,2010,20(2):192-200.
[14] WEN S H,YU H Y,ZHANG B W,et al. Fuzzy identification and delay compensation based on the force/position control scheme of the 5-DOF redundantly actuated parallel robot[J]. Int. J. Fuzzy. Syst.,2017,19(1):124-140.
[15] 王冬,吴军,王立平,等. 3-PRS并联机器人惯量耦合特性研究[J]. 力学学报,2016,48(4):804-812. WANG Dong,WU Jun,WANG Liping,et al. Research on the inertia coupling property of a 3-PRS parallel robot[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(4):804-812.
[16] SUN D,LU R,MILLS J K,et al. Synchronous tracking control of parallel manipulators using cross-coupling approach[J]. Int. J. Robot. Res.,2006,25(11):1137-1147.
[17] SHAN X L,CHENG G. Structural error and friction compensation control of a 2(3PUS+S) parallel manipulator[J]. Mech. Mach. Theory,2018,124:92-103.
[18] 何景峰,叶正茂,姜洪洲,等. 基于关节空间模型的并联机器人耦合性分析[J]. 机械工程学报,2006,42(6):161-165. HE Jingfeng,YE Zhengmao,JIANG Hongzhou,et al. Coupling analysis based on joint-space model of parallel robot[J]. Chinese Journal of Mechanical Engineering,2006,42(6):161-165.

基金

国家自然科学基金(91648105)和江苏高校优势学科建设工程资助项目。
PDF(1370 KB)

225

Accesses

0

Citation

Detail

段落导航
相关文章

/