微动界面连续干摩擦行为的分子动力学模拟

潘帅航, 尹念, 张执南

机械工程学报 ›› 2018, Vol. 54 ›› Issue (3) : 82-87.

PDF(5164 KB)
PDF(5164 KB)
机械工程学报 ›› 2018, Vol. 54 ›› Issue (3) : 82-87. DOI: 10.3901/JME.2018.03.082
摩擦学

微动界面连续干摩擦行为的分子动力学模拟

  • 潘帅航1,2, 尹念1, 张执南1,3
作者信息 +

Molecular Dynamics Simulation for Continuous Dry Friction on Fretting Interfaces

  • PAN Shuaihang1,2, YIN Nian1, ZHANG Zhinan1,3
Author information +
文章历史 +

摘要

为探究微动界面连续干摩擦过程中的分子运动规律,以晶体硅-金刚石耦合微动摩擦副为研究对象,建立了单凸体固-固接触模型,并以摩擦力响应和摩擦力垂直方向(z向)力学响应为表征量进行了分子动力学模拟分析。结果表明,在多次摩擦接触间隙,微动界面之间存在连续、波动的摩擦力学响应;连续摩擦接触过程中,受黏滑现象、单凸体变形回复以及界面上被磨损原子重新分布释放应力等过程影响,摩擦间隙仍会产生一定的z向力学响应,该力学响应的大小甚至会超过之后摩擦接触状态的力学响应,从而影响到固-固耦合微动界面的摩擦力学特性。

Abstract

Aimed at exploring the continuous dry friction behavior at fretting interface, targeted at crystalline silicon-diamond coupled interface, the fretting interface model with single asperity for dry friction analysis is set up using LAMMPS (i.e., molecular dynamics simulation tool, MD). The micro-motion process is shown with clear images and symbolized with friction force response and the normal force. It is should be noted that during the whole process, including the intervals between direct friction contacts, there exists continuously turbulent force response. The results indicate that during the continuous single asperity contacts, influenced by the factors of stick-slip effects, deformation-recovery process and stress release of wore atoms, the friction contact intervals show friction response, possibly stronger than that of the direct friction contacts to the extent that the frictional characteristics of the coupled solid fretting interfaces can be affected.

关键词

分子动力学 / 微动界面 / 连续摩擦 / 微动磨损

Key words

molecular dynamics simulation / fretting interfaces / continuous friction / fretting wear

引用本文

导出引用
潘帅航, 尹念, 张执南. 微动界面连续干摩擦行为的分子动力学模拟[J]. 机械工程学报, 2018, 54(3): 82-87 https://doi.org/10.3901/JME.2018.03.082
PAN Shuaihang, YIN Nian, ZHANG Zhinan. Molecular Dynamics Simulation for Continuous Dry Friction on Fretting Interfaces[J]. Journal of Mechanical Engineering, 2018, 54(3): 82-87 https://doi.org/10.3901/JME.2018.03.082

参考文献

[1] 罗旋,贾维栋,李超,等. 材料科学中的分子动力学模拟研究进展[J]. 材料科学与工艺,1993,4(1):125-128. LUO Xuan,FEI Weidong,LI Chao,et al. Advance of molecular dynamics simulation in materials science[J]. Material Science and Technology,1993,4(1):125-128.
[2] 王慧,胡元中,周鲲,等. 纳米摩擦学的分子动力学模拟研究[J]. 中国科学(A辑),2001, 31(3):261-266. WANG Hui, HU Yuanzhong,ZHOU Kun,et al. Molecular dynamics simulation for nanotribology[J]. Science in China (Series A),2001,31(3):261-266.
[3] 樊康旗,贾建援. 经典分子动力学模拟的主要技术[J]. 微纳电子技术,2005(3):133-137. FAN Kangqi,JIA Jianyuan. An overview on classical molecular dynamics[J]. Micronanoelectric Technology, 2005(3):133-137.
[4] 文玉华,朱如曾,周复信,等. 分子动力学模拟的主要技术[J]. 力学进展,2003,33(1):65-73. WEN Yuhua,ZHU Ruzeng,ZHOU Fuxin,et al. An overview on molecular dynamics Simulation[J]. Advances in Mechanics,2003,33(1):65-73.
[5] 李俊烨,董坤,王兴华,等. 颗粒微切削表面创成的分子动力学仿真研究[J]. 机械工程学报, 2016, 52(17):94-104. LI Junye,DONG Kun,WANG Xinghua,et al. Molecular dynamics simulation research into generative mechanism of particles micro-cutting surface[J]. Journal of Mechanical Engineering,2016,52(17):94-104
[6] WU Chengda. Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses[J]. Applied Physics A-Materials Science & Processing,2016,122:486.
[7] EDER S J,CIHAK-BAYR U,BIANCHI D. Single-asperity contributions to multi-asperity wear simulated with molecular dynamics[J]. Materials Science and Engineering. 2016,119:p012009.
[8] ARISTIZABAL H D,PARRA P A,LOPEZ P,et al. Atomic-scale simulations of material behaviors and tribology properties for BCC metal film[J]. Chinese Physics B,2016,25(1):010204.
[9] ZHENG X,ZHU H T,KOSASIH B,et al. A molecular dynamics simulation of boundary lubrication:The effect of n-alkanes chain length and normal load[J]. Wear,2013,301:62-69.
[10] ZHENG X,ZHU H T,KIET T A,et al. Roughness and lubricant effect on 3D atomic asperity contact[J]. Tribology Letters,2014,53:215-223.
[11] LIU X M,LIU Z L,WEI Y G. Nanoscale friction behavior of the Ni-film/substrate system under scratching using MD simulation[J]. Tribology Letters,2012,46:167-178.
[12] SHA Z D,SORKIN V,BRANICIO P S,et al. Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale[J]. Applied Physics Letters,2013,103:073118.
[13] DAI L,SORKIN V,SHA ZD,et al. Molecular dynamics simulations on the frictional behavior of a perfluoropolyether film sandwiched between diamond-like-carbon coatings[J]. Langmuir,2014,30:1573-1579.
[14] VARGONEN M,YANG Y J,HUANG L P,et al. Molecular simulation of tip wear in a single asperity sliding contact[J]. Wear,2013,307:150-154.
[15] FENNELL C J,GEZELTER J D. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics[J]. Journal of Chemical Physics,2006,124:234104.
[16] TERSOFF J. Empirical interatomic potential for carbon,with applications to amorphous carbon[J]. Physical Review Letters,1988,61:2879-2882.
[17] ERHART P,ALBE K. Analytical potential for atomistic simulations of silicon,carbon and silicon carbon[J]. Physical Review B,2005,71:035211.
[18] WANG ZG,ZHENG P,CHEN JX,BAI QS,LIANG YC. Effect of C-C bond breakage on diamond tool wear in nanometric cutting of silicon[J]. Acta Physica Sinica,2015,64(19):198104.
[19] XIONG Q L,TIAN X G. Atomistic simulations of interfacial mechanical characteristics of carbon nanotube/silicon nano composites[J]. Molecular Simulation,2015,41(13):1051-1059.

基金

国家自然科学基金(51575340)、固体润滑国家重点实验室开放基金(LSL-1604)和上海航天技术研究院-上海交大航天先进技术联合研究中心(USCAST2016-13)资助项目。
PDF(5164 KB)

1202

Accesses

0

Citation

Detail

段落导航
相关文章

/