钛合金热氢处理技术是利用氢在钛合金中的可逆化作用,改善钛合金微观组织与机加工性能的一种新技术。其中,热氢处理炉是钛合金加热渗氢、脱氢的重要设备,加热均匀性和加热效率是加热室设计过程中需考虑的关键技术,会直接影响钛合金热氢处理过程中的效率和质量。针对适用于钛合金的热氢处理炉进行真空加热过程温度场数值模拟分析,建立真空加热数学模型,对空载状态下的数值模拟和试验结果进行比较,二者基本相符,在此基础上深入研究了负载状态下加热功率、发热带宽度等设计参数对加热均匀性和加热效率的影响。结果表明:选择合理的加热功率、发热带宽度能够适当提高加热效率和加热均匀性。
Abstract
Technology of heat hydrogen treatment of titanium alloy is a new technology which can improve the microstructure and machinability of titanium alloy by using the reversible effect of hydrogen in titanium alloy, and the heat hydrogen treatment furnace is an important equipment for hydrogen permeation and dehydrogenation of titanium alloy. The heating uniformity and heating efficiency are important factors to be considered in the design of heating chamber, and also important indexes to measure the performance of heat hydrogen treatment furnace. The design of heating chamber directly affects the efficiency and quality of titanium alloy in the process of heat hydrogen treatment. The numerical simulation of the temperature field in the vacuum heating process of the hydrogen heat treatment furnace suitable for titanium alloy was carried out, and the mathematical model of vacuum heating was established. The comparison of numerical simulation and experiment under no-load condition showed that they were basically consistent. On this basis, the influence of the design parameters, such as the heating power and the heating bandwidth, was carefully studied from the heating efficiency and the heating uniformity under load. The results show that the heating efficiency and heating uniformity can be properly improved by choosing reasonable heating power and width of heating zone.
关键词
热氢处理炉 /
温度场 /
数值模拟 /
加热均匀性
{{custom_keyword}} /
Key words
hydrogen treatment furnace /
temperature field /
numerical simulation /
heating uniformity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄东, 南海, 吴鹤, 等. 氢处理技术在钛合金中的应用[J]. 金属热处理, 2004, 29(6):44-48.Huang Dong, Nan Hai, Wu He, et al. Application of hydrogenation technology on titanium alloy[J]. Heat Treatment of Metals, 2004, 29(6):44-48.
[2] 侯红亮, 李志强, 王亚军, 等. 钛合金热氢处理技术及其应用前景[J]. 中国有色金属学报, 2003, 13(3):533-549.Hou Hongliang, Li Zhiqiang, Wang Yajun, et al. Technology of hydrogen treatment for titanium alloy and its application prospect[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(3):533-549.
[3] 石磊, 解永蓉. 真空热处理炉瞬态传热过程的数值模拟[J]. 真空, 2013, 50(5):38-40.Shi Lei, Xie Yongrong. Numerical simulation of the transient heat transfer process of vacuum heat treatment furnace[J]. Vacuum, 2013, 50(5):38-40.
[4] 韩立勇, 杨星团, 姜胜耀, 等. 真空石墨加热器温度场数值模拟与分析[J]. 原子能科学技术, 2011, 45(5):559-563.Han Liyong, Yang Xingtuan, Jiang Shengyao, et al. Numerical simulation and analysis of temperature field in vacuum graphite heater[J]. Atomic Energy Science and Technology, 2011, 45(5):559-563.
[5] 王明伟. 高温合金和钛合金真空热处理及热胀形过程数值模拟[D]. 大连:大连理工大学, 2007.
[6] 朱文杰. 对影响材料发射率的因素和发射率模型的探究[D]. 新乡:河南师范大学, 2017.
[7] 王昊杰, 李勇, 王昭东, 等. 真空渗碳炉加热室温度场数值模拟与分析[J]. 热加工工艺, 2016, 45(24):172-176, 180.Wang Haojie, Li Yong, Wang Zhaodong, et al. Numerical simulation and analysis of temperature field in heating chamber of vacuum carburizing furnace[J]. Hot Working Technology, 2016, 45(24):172-176, 180.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
“高档数控机床与基础制造装备”科技重大专项(2019ZX04017001)
{{custom_fund}}