FCC结构高熵合金的析出强化研究进展

陆文杰, 罗贤, 黄斌, 李鹏涛, 杨延清

金属热处理 ›› 2020, Vol. 46 ›› Issue (9) : 1-9.

PDF(2546 KB)
PDF(2546 KB)
金属热处理 ›› 2020, Vol. 46 ›› Issue (9) : 1-9. DOI: 10.13251/j.issn.0254-6051.2020.09.001
综述

FCC结构高熵合金的析出强化研究进展

  • 陆文杰, 罗贤, 黄斌, 李鹏涛, 杨延清
作者信息 +

Research progress on precipitation strengthening of FCC structure high-entropy alloys

  • LU Wen-jie, LUO Xian, HUANG Bin, LI Peng-tao, YANG Yan-qing
Author information +
文章历史 +

摘要

高熵合金是近年来涌现出的一种新型合金,突破了以一种或者两种元素为主、少量添加元素为辅的传统合金设计理念。作为高熵合金体系一个重要分支—FCC结构的高熵合金,具有高损伤容限、良好的抗辐照能力、高耐磨、耐腐蚀性能等一系列优异的性能,可以作为理想的工程结构材料。然而,FCC结构高熵合金强度-塑性不匹配严重制约了其工程应用。研究表明,析出强化可以有效提高FCC结构高熵合金的强度,产生优异的强度-塑性匹配性能,各国学者相继开发出大量的高性能析出强化高熵合金体系。本文主要介绍了FCC结构高熵合金的析出强化研究,包括非共格析出相和共格析出相,着重介绍了研究现状以及强韧化的影响机制,并对未来高熵合金析出强化研究进行了展望。

Abstract

High entropy alloys(HEAs) are a new kind of alloys,which break through the traditional alloy design with one or two elements as principal constituent and a few elements as auxiliary constituent.As an important branch of high entropy alloy system,FCC structure HEAs show excellent properties,such as high damage tolerance,good irradiation resistance,high wear resistance and corrosion resistance.However,the strength-ductility tradeoff dilemma of FCC structure HEAs severely limits their engineering applications.Previous researches indicate that precipitation strengthening can effectively improve the strength of FCC structure HEAs and produce excellent strength-ductility synergy properties.The research progress on precipitation strengthening of FCC structure HEAs was mainly introduced,including incoherent and coherent precipitates.The current research status and underlying influence mechanisms of precipitation-strengthening were briefly reviewed.The future prospective of precipitation-strengthening in FCC structure HEAs was also discussed.

关键词

高熵合金 / FCC结构 / 析出强化 / 强度-塑性匹配性能

Key words

high-entropy alloy (HEA) / FCC structure / precipitation strengthening / strength-ductility synergy properties

引用本文

导出引用
陆文杰, 罗贤, 黄斌, 李鹏涛, 杨延清. FCC结构高熵合金的析出强化研究进展[J]. 金属热处理, 2020, 46(9): 1-9 https://doi.org/10.13251/j.issn.0254-6051.2020.09.001
LU Wen-jie, LUO Xian, HUANG Bin, LI Peng-tao, YANG Yan-qing. Research progress on precipitation strengthening of FCC structure high-entropy alloys[J]. Heat Treatment of Metals, 2020, 46(9): 1-9 https://doi.org/10.13251/j.issn.0254-6051.2020.09.001

参考文献

[1] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218.
[2] 刘聪,彭文屹,江长双,等.退火处理对Al Co Cu Fe Ni0.2高熵合金组织与性能的影响[J].金属热处理,2019,44(6):108-112.Liu Cong,Peng Weiyi,Jiang Changshuang,et al.Effect of annealing treatment on microstructure and properties of Al Co Cu Fe Ni0.2highentropy alloy[J].Heat Treatment of Metals,2019,44(6):108-112.
[3] Yeh J W,Lin S J,Chin T S,et al.Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J].Metallurgical and Materials Transactions A,2004,35(8):2533-2536.
[4] Miracle D B,Senkov O N.A critical review of high entropy alloys (HEAs) and related concepts[J].Acta Materialia,2017,122:448-511.
[5] Zhang Y,Zuo T T,Tang Z,et al.Microstructures and properties of highentropy alloys[J].Progress in Materials Science,2014,61:1-93.
[6] Ye Y F,Wang Q,Lu J,et al.High-entropy alloy:Challenges and prospects[J].Materials Today,2015,19(6):349-362.
[7] Yao M J,Pradeep K G,Tasan C C,et al.A novel,single phase,nonequiatomic Fe Mn Ni Co Cr high-entropy alloy with exceptional phase stability and tensile ductility[J].Scripta Materialia,2014,72-73:5-8.
[8] Antonov S,Detrois M,Tin S.Design of novel precipitate-strengthened Al-Co-Cr-Fe-Nb-Ni high-entropy superalloys[J].Metallurgical and Materials Transactions A,2017,49:305-320.
[9] Zhou Y,Zhou D,Jin X,et al.Design of non-equiatomic mediumentropy alloys[J].Scientific Reports,2018,8(1):1236.
[10] Guo W,Dmowski W,Noh J Y,et al.Local atomic structure of a high-entropy alloy:An X-ray and neutron scattering study[J].Metallurgical and Materials Transactions A,2012,44:1994-1997.
[11] Yeh J W,Chang S Y,Hong Y D,et al.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J].Materials Chemistry and Physics,2007,103(1):41-46.
[12] Tsai K Y,Tsai M H,Yeh J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J].Acta Materialia,2013,61(13):4887-4897.
[13] 翟逸玥,寇生中,杨慧妮.AlxCr Fe Ni Mn高熵合金的组织和性能[J].金属热处理,2019,44(7):144-149.Zhai Yiyue,Kou Shengzhong,Yang Huini.Microstructure and properties of AlxCr Fe Ni Mn high entropy alloys[J].Heat Treatment of Metals,2019,44(7):144-149.
[14] Gludovatz B,Hohenwarter A,Thurston K V S,et al.Exceptional damage-tolerance of a medium-entropy alloy Cr Co Ni at cryogenic temperatures[J].Nature Communications,2016,7:10602.
[15] Gludovatz B,Hohenwarter A,Catoor D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158.
[16] Laplanche G,Kostka A,Reinhart C,et al.Reasons for the superior mechanical properties of medium-entropy Cr Co Ni compared to highentropy Cr Mn Fe Co Ni[J].Acta Materialia,2017,128:292-303.
[17] Senkov O N,Scott J M,Senkova S V,et al.Microstructure and room temperature properties of a high-entropy Ta Nb Hf Zr Ti alloy[J].Journal of Alloys and Compounds,2011,509:6043-6048.
[18] Senkov O N,Wilks G B,Scott J M,et al.Mechanical properties of Nb25Mo25Ta25W25and V20Nb20Mo20Ta20W20refractory high entropy alloys[J].Intermetallics,2011,19:698-706.
[19] Huang H,Wu Y,He J,et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J].Advanced Materials,2017,29(30):1-7.
[20] Gao M,Alman D.Searching for next single-phase high-entropy alloy compositions[J].Entropy,2013,15(2):4504-4519.
[21] Soler R,Evirgen A,Yao M,et al.Microstructural and mechanical characterization of an equiatomic YGd Tb Dy Ho high entropy alloy with hexagonal close-packed structure[J].Acta Materialia,2018,156(1):86-96.
[22] Takeuchi A,Amiya K,Wada T,et al.High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams[J].Jom,2014,66(10):1984-1992.
[23] Granberg F,Nordlund K,Ullah M W,et al.Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys[J].Physical Review Letters,2016,116(13):1-8.
[24] Lu C,Niu L,Chen N,et al.Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J].Nature Communications,2016,7:13564.
[25] Poletti M G,Fiore G,Gili F,et al.Development of a new high entropy alloy for wear resistance:Fe Co Cr Ni W0.3and Fe Co Cr Ni W0.3+5 at.% of C[J].Materials and Design,2017,115:247-254.
[26] Hsu Y J,Chiang W C,Wu J K.Corrosion behavior of Fe Co Ni Cr Cux high-entropy alloys in 3.5% sodium chloride solution[J].Materials Chemistry and Physics,2005,92(1):112-117.
[27] Lee C P,Chen Y Y,Hsu C Y,et al.The effect of boron on the corrosion resistance of the high entropy alloys Al0.5Co Cr Cu Fe Ni Bx[J].Journal of the Electrochemical Society,2007,154(8):424-430.
[28] Toda-Caraballo I,Pedro E J,Rivera-Díaz-del-Castillo.Modelling solid solution hardening in high entropy alloys[J].Acta Materialia,2015,85:14-23.
[29] Lu W J,Luo X,Yang Y Q,et al.Effects of Al addition on structural evolution and mechanical properties of the Cr Co Ni medium-entropy alloy[J].Materials Chemistry and Physics,2019,238:121841.
[30] He J Y,Liu W H,Wang H,et al.Effects of Al addition on structural evolution and tensile properties of the Fe Co Ni Cr Mn high-entropy alloy system[J].Acta Materialia,2014,62:105-113.
[31] Kumar N,Komarasamy M,Nelaturu P,et al.Friction stir processing of a high entropy alloy Al0.1Co Cr Fe Ni[J].JOM,2015,67(5):1007-1013.
[32] Yoshida S,Bhattacharjee T,Bai Y,et al.Friction stress and HallPetch relationship in Co Cr Niequi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing[J].Scripta Materialia,2017,134:33-36.
[33] Sathiyamoorthi P,Basu J,Kashyap S,et al.Thermal stability and grain boundary strengthening in ultraflne-grained Co Cr Fe Ni high entropy alloy composite[J].Materials and Design,2017,134:426-433.
[34] Liu W H,Wu Y,He J Y,et al.Grain growth and the Hall-Petch relationship in a high-entropy Fe Cr Ni Co Mn alloy[J].Scripta Materialia,2013,68(7):526-529.
[35] Liu W H,Lu Z P,He J Y,et al.Ductile Co Cr Fe Ni Mox high entropy alloys strengthened by hard intermetallic phases[J].Acta Materialia,2016,116:332-342.
[36] Zhang L,Huo X,Wang A,et al.A ductile high entropy alloy strengthened by nano sigma phase[J].Intermetallics,2020,122:106813.
[37] Ming K,Bi X,Wang J.Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10alloys[J].Scripta Materialia,2017,137:88-93.
[38] Bae J W,Park J M,Moon J,et al.Effect ofμ-precipitates on the microstructure and mechanical properties of non-equiatomic Co Cr Fe Ni Mo medium-entropy alloys[J].Journal of Alloys and Compounds,2019,781:75-83.
[39] Lu W J,Luo X,Yang Y Q,et al.Effects of Nb additions on structure and mechanical properties evolution of Co Cr Ni medium-entropy alloy[J].Materials Express,2019,9:291-298.
[40] He F,Wang Z,Cheng P,et al.Designing eutectic high entropy alloys of Co Cr Fe Ni Nbx[J].Journal of Alloys and Compounds,2015,656:284-289.
[41] Liu W H,He J Y,Huang H L,et al.Effects of Nb additions on the microstructure and mechanical property of Co Cr Fe Ni high-entropy alloys[J].Intermetallics,2015,60:1-8.
[42] Gao X,Lu Y,Zhang B,et al.Microstructural origins of high strength and high ductility in an Al Co Cr Fe Ni2.1eutectic high-entropy alloy[J].Acta Materialia,2017,141:59-66.
[43] Wani I S,Bhattacharjee T,Sheikh S,et al.Ultrafine-grained Al Co Cr Fe Ni2.1eutectic high-entropy alloy[J].Materials Research Letters,2016,4:174-179.
[44] Gwalani B,Soni V,Lee M,et al.Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3Co Cr Fe Ni high entropy alloy[J].Materials and Design,2017,121:254-260.
[45] Dong Y,Gao X,Lu Y,et al.A multi-component Al Cr Fe2Ni2alloy with excellent mechanical properties[J].Materials Letters,2016,169:62-64.
[46] He J Y,Wang H,Huang H L,et al.A precipitation-hardened highentropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196.
[47] Zhao Y L,Yang T,Tong Y,et al.Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a Co Cr Ni-based medium-entropy alloy[J].Acta Materialia,2017,138:72-82.
[48] Yang T,Zhao Y,Liu W,et al.L12-strengthened high-entropy alloys for advanced structural applications[J].Journal of Materials Research,2018,33:2983-2997.
[49] Lu W J,Luo X,Yang Y Q,et al.Nano-precipitates strengthened non-equiatomic medium-entropy alloy with outstanding tensile properties[J].Materials Science and Engineering A,2020,780:139218.
[50] Chen Y,Deng H W,Xie Z M,et al.Tailoring microstructures and tensile properties of a precipitation-strengthened (Fe Co Ni)94Ti6medium-entropy alloy[J].Journal of Alloys and Compounds,2020,828:154457.
[51] He F,Chen D,Han B,et al.Design of DO22superlattice with superior strengthening effect in high entropy alloys[J].Acta Materialia,2019,167:275-286.
[52] Lu W J,Luo X,Yang Y Q,et al.Co-free non-equilibrium mediumentropy alloy with outstanding tensile properties[J].Journal of Alloys and Compounds,2020,833:155074.
[53] Wu H,Huang S,Zhu C,et al.Excellent mechanical properties of insitu Ti C/Fe Cr Ni Cu V0.1high entropy alloy matrix composites[J].Materials Letters,2019,257:126729.
[54] 张太超,李俊魁,杨春辉,等.Y2O3对Co Cr Fe Mn Ni高熵合金退火稳定性的影响[J].金属热处理,2019,44(1):195-204.Zhang Taichao,Li Junkui,Yang Chunhui,et al.Effect of Y2O3on phase stability of Co Cr Fe Mn Ni high entropy alloy after annealing[J].Heat Treatment of Metals,2019,44(1):195-204.
[55] Xie Y,Zhou D,Luo Y,et al.Fabrication of Co Cr Fe Ni Mn high entropy alloy matrix composites by thermomechanical consolidation of a mechanically milled powder[J].Materials Characterization,2019,148:307-316.
[56] Deng Y,Tasan C C,Pradeep K G,et al.Design of a twinninginduced plasticity high entropy alloy[J].Acta Materialia,2015,94:124-133.
[57] Guo W,Su J,Lu W,et al.Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy[J].Acta Materialia,2020,185:45-54.
[58] Wu Z,Bei H,Pharr G M,et al.Temperature dependence of the mechanical properties of equiatomic solid solution alloys with facecentered cubic crystal structures[J].Acta Materialia,2014,81:428-441.
[59] Ma S G,Zhang S F,Qiao J W,et al.Superior high tensile elongation of a single-crystal Co Cr Fe Ni Al0.3high-entropy alloy by Bridgman solidification[J].Intermetallics,2014,54:104-109.
[60] Shun T T,Du Y C.Microstructure and tensile behaviors of FCC Al0.3Co Cr Fe Ni high entropy alloy[J].Journal of Alloys and Compounds,2009,479(1/2):157-160.
[61] Wu Z,Bei H.Microstructures and mechanical properties of compositionally complex Co-free Fe Ni Mn Cr18FCC solid solution alloy[J].Materials Science and Engineering A,2015,640:217-224.
[62] Niu S,Kou H,Guo T,et al.Strengthening of nanoprecipitations in an annealed Al0.5Co Cr Fe Ni high entropy alloy[J].Materials Science and Engineering A,2016,671:82-86.
[63] Yang T,Zhao Y L,Tong Y,et al.Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J].Science,2018,362(6417):933-937.
[64] Tong Y,Chen D,Han B,et al.Outstanding tensile properties of a precipitation-strengthened Fe Co Ni Cr Ti0.2high-entropy alloy at room and cryogenic temperatures[J].Acta Materialia,2019,165:228-240.
[65] He J Y,Wang H,Wu Y,et al.Precipitation behavior and its effects on tensile properties of Fe Co Ni Cr high-entropy alloys[J].Intermetallics,2016,79:41-52.
[66] Chang Y J,Yeh A C.The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy[J].Materials Chemistry and Physics,2017,210:1-9.
[67] Zhao Y L,Yang T,Zhu J H,et al.Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates[J].Scripta Materialia,2018,148:51-55.
[68] Lu Y,Dong Y,Guo S,et al.A promising new class of hightemperature alloys:Eutectic high-entropy alloys[J].Scientific Reports,2014,4:6200.
[69] Huo W,Zhou H,Fang F,et al.Microstructure and properties of novel Co Cr Fe Ni Taxeutectic high-entropy alloys[J].Journal of Alloys and Compounds,2018,735:897-904.
[70] Jiang H,Han K,Gao X,et al.A new strategy to design eutectic highentropy alloys using simple mixture method[J].Materials and Design,2018,142:101-105.
[71] Oblak J M,Duvall D S,Paulonis D F,et al.An estimate of the strengthening arising from coherent,tetragonally-distorted particles[J].Materials Science and Engineering,1974,13(1):51-56.
[72] Chaturvedi M C,Chung D.Yielding behavior of aγ″-precipitation strengthened Co-Ni-Cr-Nb-Fe alloy[J].Metallurgical and Materials Transactions A,1981,12(1):77-81.
[73] Zhao Y Y,Chen H W,Lu Z P,et al.Thermal stability and coarsening of coherent particles in a precipitation-hardened (Ni Co Fe Cr)94Ti2Al4high-entropy alloy[J].Acta Materialia,2018,147:184-194.
[74] Zhao Y,Yang T,Han B,et al.Exceptional nanostructure stability and its origins in the Co Cr Ni-based precipitation-strengthened mediumentropy alloy[J].Materials Research Letters,2019,7(4):152-158.
[75] Yu C Y,Xu X D,Chen M W,et al.Atomistic mechanism of nanoscale phase separation in fcc-based high entropy alloys[J].Journal of Alloys and Compounds,2015,663:340-344.
[76] Xu X D,Liu P,Guo S,et al.Nanoscale phase separation in a fccbased Co Cr Cu Fe Ni Al0.5high-entropy alloy[J].Acta Materialia,2015,84:145-152.

基金

国家自然科学基金(51901184);2020年度航天科学技术基金
PDF(2546 KB)

984

Accesses

0

Citation

Detail

段落导航
相关文章

/