面向六自由度移动机械手底座位置优化方法

马金茹, 高文华, 祁宇明

机床与液压 ›› 2022, Vol. 50 ›› Issue (5) : 49-55.

PDF(4624 KB)
PDF(4624 KB)
机床与液压 ›› 2022, Vol. 50 ›› Issue (5) : 49-55. DOI: 10.3969/j.issn.1001-3881.2022.05.010
工业机器人专栏

面向六自由度移动机械手底座位置优化方法

  • 马金茹1, 高文华2, 祁宇明3
作者信息 +

Optimization Method of Base Position for 6-DOF Mobile Manipulator

  • MA Jinru1, GAO Wenhua2, QI Yuming3
Author information +
文章历史 +

摘要

移动机械手具有良好的机动性和灵活性,在大型复杂零件的加工中具有广阔的应用前景。为了充分利用机器人的加工能力,提出六自由度移动机械手的加工基座位置优化方法。建立机械手运动性能指标和全局刚度指标,在此基础上综合考虑了六自由度机械手关节距离、关节速度、奇异回避和避碰等多约束条件。采用稀疏均匀网格分解寻找优化模型的有效初值,通过序列二次规划(SQP)方法最终求解基座的最优位置。最后通过风机叶片的加工仿真分析和实验验证了该优化方法的有效性和性能指标的正确性。

Abstract

Mobile manipulator has good mobility and flexibility, and has broad application prospects in the processing of large and complex parts.In order to make full use of machining ability of robot, a machining base position optimization method of 6-DOF mobile manipulator was proposed.The kinematic performance index and global stiffness index of the manipulator were established.On this basis, multiple constraints such as joint distance, joint velocity, singularity avoidance and collision avoidance of the 6-DOF manipulator were comprehensively considered.Sparse uniform grid decomposition was used to find the effective initial value of the optimization model, and the optimal position of the base was finally solved by sequential quadratic programming(SQP).Finally, the effectiveness of the optimization method and the correctness of the performance index were verified by the machining simulation analysis and experiments of fan blades.

关键词

移动机械手 / 基座优化 / 运动性能 / 刚度性能

Key words

Mobile manipulator / Base optimization / Kinematic performance / Stiffness performance

引用本文

导出引用
马金茹, 高文华, 祁宇明. 面向六自由度移动机械手底座位置优化方法[J]. 机床与液压, 2022, 50(5): 49-55 https://doi.org/10.3969/j.issn.1001-3881.2022.05.010
MA Jinru, GAO Wenhua, QI Yuming. Optimization Method of Base Position for 6-DOF Mobile Manipulator[J]. Machine Tool & Hydraulics, 2022, 50(5): 49-55 https://doi.org/10.3969/j.issn.1001-3881.2022.05.010

参考文献

[1] 陈虎,宋智超,光孟坷,等.移动机器人复杂环境路径规划[J].广西大学学报(自然科学版),2021,46(3):692-702.CHEN H,SONG Z C,GUANG M K,et al.Path planning for the complex environment of mobile robots[J].Journal of Guangxi University (Natural Science Edition),2021,46(3):692-702.
[2] 王婧,张弓,郑甲红,等.多机器人优化布局与任务分配的研究综述与展望[J].机床与液压,2021,49(16):161-167.WANG J,ZHANG G,ZHENG J H,et al.Survey and expectation of multi-robot optimization layout and task allocation[J].Machine Tool & Hydraulics,2021,49(16):161-167.
[3] KAMRANI B,BERBYUK V,WÄPPLING D,et al.Optimal robot placement using response surface method[J].The International Journal of Advanced Manufacturing Technology,2009,44(1/2):201-210.
[4] SPENSIERI D,CARLSON J S,BOHLIN R,et al.Optimal robot placement for tasks execution[J].Procedia CIRP,2016,44:395-400.
[5] GADALETA M,BERSELLI G,PELLICCIARI M.Energy-optimal layout design of robotic work cells:potential assessment on an industrial case study[J].Robotics and Computer-Integrated Manufacturing,2017,47:102-111.
[6] 蒋毅,郝凯强,平雪良.基于元结构的机器人基座结构动态分析与优化[J].组合机床与自动化加工技术,2014(10):30-33.JIANG Y,HAO K Q,PING X L.Structural dynamic analysis and optimization for robot pedestal based on element structure[J].Modular Machine Tool & Automatic Manufacturing Technique,2014(10):30-33.
[7] 张崇,张小俊,朱海涛,等.风电塔筒爬壁机器人电机基座优化设计[J].科学技术与工程,2019,19(22):195-200.ZHANG C,ZHANG X J,ZHU H T,et al.Optimization design of motor base on climbing robot of wind turbine tower[J].Science Technology and Engineering,2019,19(22):195-200.
[8] REN S N,XIE Y,YANG X D,et al.A method for optimizing the base position of mobile painting manipulators[J].IEEE Transactions on Automation Science and Engineering,2017,14(1):370-375.
[9] YU Q K,WANG G L,HUA X T,et al.Base position optimization for mobile painting robot manipulators with multiple constraints[J].Robotics and Computer-Integrated Manufacturing,2018,54:56-64.
[10] 康荣杰,王聪,耿仕能,等.基于雅可比矩阵的连续型机器人灵活性分析[J].天津大学学报(自然科学与工程技术版),2020,53(4):341-348.KANG R J,WANG C,GENG S N,et al.Jacobian-matrix-based dexterity analysis of a continuum robot[J].Journal of Tianjin University (Science and Technology),2020,53(4):341-348.
[11] 张灿果,耿明超,路懿.一种含复合球副4-dof并联机构运动学研究[J].机械设计与制造,2020(8):292-295.ZHANG C G,GENG M C,LU Y.Kinematics analysis of the 4-dof parallel manipulator with compound spherical joint[J].Machinery Design & Manufacture,2020(8):292-295.
[12] 王战玺,张晓宇,李飞飞,等.机器人加工系统及其切削颤振问题研究进展[J].振动与冲击,2017,36(14):147-155.WANG Z X,ZHANG X Y,LI F F,et al.Review on the research developments of robot machining systems and cutting chatter behaviors[J].Journal of Vibration and Shock,2017,36(14):147-155.
[13] ABELE E,WEIGOLD M,ROTHENBÜCHER S.Modeling and identification of an industrial robot for machining applications[J].CIRP Annals,2007,56(1):387-390.
[14] GUO Y J,DONG H Y,KE Y L.Stiffness-oriented posture optimization in robotic machining applications[J].Robotics and Computer-Integrated Manufacturing,2015,35:69-76.
[15] 李楠,刘波,霍宏,等.基于肌力信号与电刺激感觉反馈的多自由度机械手人机交互控制[J].机器人,2015,37(6):718-724.LI N,LIU B,HUO H,et al.Human-machine interaction control based on force myograph and electrical stimulation sensory feedback for multi-DOF robotic hand[J].Robot,2015,37(6):718-724.

基金

天津市科技计划项目(18ZXJMTG00160)
PDF(4624 KB)

231

Accesses

0

Citation

Detail

段落导航
相关文章

/