为提高炸药能量利用效率、降低能量耗散,利用自约束结构炸药进行爆炸焊接研究. 以T2铜和Q345钢分别作为复层与基层,自约束结构炸药作为焊接炸药,借助ANSYS/AUTODYN软件模拟爆炸焊接过程,并进行T2/Q345爆炸焊接试验,对复合板试件进行拉剪性能检测和微观形貌观察分析其焊接质量. 结果表明,T2/Q345爆炸焊接的碰撞速度距起爆端100 mm后均大于临界碰撞速度345 m/s,距起爆端150 mm处碰撞速度达到最大值567 m/s. T2/Q345复合板起爆端呈直线结合,并随着传爆距离增加变为波形结合. T2/Q345复合板远离起爆端的平均剪切强度为237.0 MPa,断裂位置位于铜一侧. 试件被拉剪破坏后的铜层出现加工硬化现象,远离结合界面的显微硬度和塑性变形程度呈增强趋势. 自约束结构炸药可降低自身爆炸产物飞散,使炸药能量更多地转化为复层动能,提高能量利用率.
Abstract
In order to improve the energy utilization rate and reduce the energy dissipation, explosive welding was carried out with self-restraint structure explosive. T2 copper and Q345 steel were used as fly and base layers, respectively, and self-restraint structure explosive was adopted as welding explosive. The explosive welding process was simulated by ANSYS/AUTODYN code, and the copper/steel explosive welded clad plate was prepared. The welding quality was analyzed by mechanical property testing and microscopic morphology observation. The results show that self- restraint structure could reduce the dissipation of its own detonation products, which makes more explosive energy into kinetic energy of flyer layer and improves energy utilization rate. The collision velocity of copper/steel explosive welding is greater than the critical collision velocity of 345 m/s after detonation distance is greater than 100 mm away from the initiation end. The ultimate collision velocity at a detonation distance of 150 mm is 567 m/s. The initiation end of the copper/steel clad plate is of linear bonding, the bonding interface is transformed into wavy bonding as detonation distance increases. The shear strength of copper/steel clad plate is 237.0 MPa, and the fracture position is on the copper side. Copper layer existed work hardening after tension shear failure, and the farther measuring point from the interface is, the stronger the microhardness and plastic deformation is.
关键词
爆炸焊接 /
自约束结构炸药 /
数值模拟 /
结合性能
{{custom_keyword}} /
Key words
explosive welding /
self- restraint structure explosive /
numerical simulation /
welding quality
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jiang C, Long W M, Feng J, et al. Thermal fatigue behavior of copper/stainless steel explosive welding joint[J]. China Welding, 2021, 30(4): 25 - 29.
[2] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 - 85
Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 - 85
[3] 毕志雄, 李雪交, 吴勇, 等. 自约束结构装药下T2/Q345爆炸焊接研究[J]. 含能材料, 2021, 29(5): 394 - 398
Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Study on explosion welding of T2/Q345 alloys with self-restraint explosive[J]. Chinese Journal of Energetic Materials, 2021, 29(5): 394 - 398
[4] 田启超, 马宏昊, 沈兆武, 等. Al0.1CoCrFeNi 高熵合金/TA2钛复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2021, 42(6): 22 - 29
Tian Qichao, Ma Honghao, Shen Zhaowu, et al. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. Transactions of the China Welding Institution, 2021, 42(6): 22 - 29
[5] 郑远谋. 爆炸焊接和爆炸复合材料[M]. 北京: 国防工业出版社, 2017.
Zheng Yuanmou. Explosive welding and explosive composite material[M]. Beijing: Natianal Defense Industry Press, 2017.
[6] Lysak V L, Kuzmin S V. Energy balance during explosive welding[J]. Journal of Materials Processing Technology, 2015, 222: 356 - 364.
[7] Yang M, Ma H H, Shen Z W. Study on the effects of explosive covering on explosive welding of stainless steel to steel[J]. Propellants Explosives Pyrotechnics, 2019, 44: 609 - 616.
[8] Sun Z R, Shi C G, Shi H, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments[J]. Materials and Design, 2020, 195: 109027.
[9] 曾翔宇, 李晓杰, 曹景祥, 等. 材料强度对爆炸焊接结合界面的影响[J]. 爆炸与冲击, 2019, 39(5): 139 - 145
Zeng Xiangyu, Li Xiaojie, Cao Jingxiang, et al. Interface characteristics of explosive welding for different strength plates[J]. Explosion and Shock Waves, 2019, 39(5): 139 - 145
[10] Sandra P, Marc G, Alexandre L, et al. Investigation of JWL equation of state for detonation products at low pressure with radio interferometry[J]. Propellants Explosives Pyrotechnics, 2018, 43: 1157 - 1163.
[11] Daridon L, Oussouaddi O, Ahzi S. Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson-Cook models[J]. International Journal of Solids and Structures, 2004, 41: 3109 - 3124.
[12] 李晓杰. 双金属爆炸焊接上限[J]. 爆炸与冲击, 1991, 4(2): 134 - 138
Li Xiaojie. The upper limit of bimetal explosive welding parameters[J]. Explosion and Shock Waves, 1991, 4(2): 134 - 138
[13] 邵丙璜, 张凯. 爆炸焊接原理及其工程应用[M]. 大连: 大连理工大学出版社, 1987.
Shao Binhuang, Zhang Kai. Principles and engineering applications of explosive welding[M]. Dalian: Dalian University of Technology Press, 1987.
[14] 陈代果, 姚勇, 邓勇军, 等. 炸药覆盖层厚度对爆炸焊接的影响[J]. 火炸药学报, 2019, 42(1): 52 - 57
Chen Daiguo, Yao Yong, Deng Yongjun, et al. Effects of covering thickness of explosives on explosive welding[J]. Chinese Journal of Explosives & Propellants, 2019, 42(1): 52 - 57
[15] Bahrani A S, Black T J, Crossland B. The mechanics of wave formation in explosive welding[J]. Mathematical and Physical Sciences, 1967, 296(1445): 123 - 136.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(11872002);安徽省自然科学基金资助项目(1808085QA06);安徽省博士后基金资助项目(2019B355)
{{custom_fund}}