7075-T6高强铝合金温热变形本构方程及热加工图

彭宇, 杨程, 彭迎娇, 杨浩鑫, 赵升吨

锻压技术 ›› 2023, Vol. 48 ›› Issue (9) : 230-238.

PDF(2641 KB)
PDF(2641 KB)
锻压技术 ›› 2023, Vol. 48 ›› Issue (9) : 230-238. DOI: 10.13330/j.issn.1000-3940.2023.09.029
材料与成形性能

7075-T6高强铝合金温热变形本构方程及热加工图

  • 彭宇1, 杨程1, 彭迎娇1, 杨浩鑫1, 赵升吨2
作者信息 +

Warm deformation constitutive equation and thermal processing map of 7075-T6 high strength aluminum alloy

  • Peng Yu1, Yang Cheng1, Peng Yingjiao1, Yang Haoxin1, Zhao Shengdun2
Author information +
文章历史 +

摘要

为了获得7075高强铝合金的温热成形合理变形的工艺参数,采用Gleeble-3500热模拟试验机测试7075-T6铝合金的应力-应变曲线。研究了该合金在变形温度为150~300℃和应变速率为0.01~10 s-1条件下的流变行为,并基于Arrhenius本构方程建立了0.3~0.6应变下7075-T6铝合金的热加工图,最后结合金相显微组织验证了热加工图的可靠性和实用性。结果表明:7075-T6铝合金对变形温度、应变速率、应变量具有高度敏感性,热形变激活能Q=291.151 kJ·mol-1;修正后的Arrhenius本构方程的拟合结果良好,相关系数r值与平均绝对误差AARE分别为99.65%和5.54%,能较好地预测7075-T6铝合金的流变行为;在应变为0.6时,最佳的温热加工安全区域范围为温度为250~300℃、应变速率为0.01~0.05 s-1

Abstract

In order to obtain the reasonable deformation process parameters of warm forming for 7075 high strength aluminum alloy, the stress-strain curve of 7075-T6 aluminum alloy was tested by thermal simulation testing machine Gleeble-3500, and the rheological behavior of 7075-T6 aluminum alloy under the conditions of the deformation temperature of 150-300℃ and the strain rate of 0.01-10 s-1was studied. Then, the thermal processing map of 7075-T6 aluminum alloy under the strain of 0.3-0.6 was established based on Arrhenius constitutive equation, and the reliability and practicability of the thermal processing map were verified by metallographic microstructure.The results show that 7075-T6 aluminum alloy is highly sensitive to deformation temperature, strain rate and strain amount, and the thermal deformation activation energy Q is 291.151 kJ·mol-1. The fitting result of the modified Arrhenius constitutive equation is good, and the correlation coefficient r value and the average absolute error AARE are 99.65% and 5.54% respectively, which can better predict the rheological behavior of 7075-T6 aluminum alloy. When the strain is 0.6, the best warm processing safe zone range is the temperature of 250-300℃ and the strain rate of 0.01-0.05 s-1.

关键词

7075-T6铝合金 / 温热变形行为 / 本构方程 / 热加工图 / 显微组织

Key words

7075-T6 aluminum alloy / warm deformation behavior / constitutive equation / thermal processing map / microstructure

引用本文

导出引用
彭宇, 杨程, 彭迎娇, 杨浩鑫, 赵升吨. 7075-T6高强铝合金温热变形本构方程及热加工图[J]. 锻压技术, 2023, 48(9): 230-238 https://doi.org/10.13330/j.issn.1000-3940.2023.09.029
Peng Yu, Yang Cheng, Peng Yingjiao, Yang Haoxin, Zhao Shengdun. Warm deformation constitutive equation and thermal processing map of 7075-T6 high strength aluminum alloy[J]. Forging & Stamping Technology, 2023, 48(9): 230-238 https://doi.org/10.13330/j.issn.1000-3940.2023.09.029

参考文献

[1] 罗锐, 曹赟, 邱宇, 等. 喷射沉积态Al-Zn-Mg-Cu合金的高温变形行为及组织演变[J]. 稀有金属, 2022, 46(2):144-152.Luo R, Cao Y, Qiu Y, el al. Deformation characteristics and microstructure evolution of spray-deposited Al-Zn-Mg-Cu alloy[J].Chinese Journal of Rare Metals, 2022, 46(2):144-152.
[2] Gupta R K, Kumar V, Anil Krishnan A, el al. Hot deformation behavior of aluminum alloys AA7010 and AA7075[J]. Journal of Materials Engineering and Performance, 2019, 28(8):1059-9495.
[3] Shi C, Lai J, Chen X G. el al. Microstructural evolution and dynamic softening mechanisms of Al-Zn-Mg-Cu alloy during hot compressive deformation[J]. Materials, 2013, 7(1):244-264.
[4] 陈水生, 冯莽, 杨志波, 等. 7075-T6铝合金的高温成形性能和微观组织[J]. 金属热处理, 2021, 46(6):191-194.Chen S S, Feng M, Yang Z B, et al. High temperature formability and microstructure of 7075-T6 aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(6):191-194.
[5] 丁慧莹, 管延锦, 李玉琦, 等. GGG70L球墨铸铁的高温变形行为及其本构模型建立[J]. 锻压技术, 2022, 47(12):249-255.Ding H Y, Guan Y J, Li Y Q, el al. Deformation behavior at high temperature and establishment of constitutive model of GGG70L ductile iron[J]. Forging & Stamping Technology, 2022, 47(12):249-255.
[6] 刘克威, 谭安平. 7075铝合金热变形的组织演化及本构方程研究[J]. 塑性工程学报, 2020, 27(8):159-165.Liu K W, Tan A P. Microstructure evolution and constitutive equation in hot deformation of 7075 aluminum alloy[J]. Journal of Plasticity Engineering, 2020, 27(8):159-165.
[7] Zhang D N, Qian Q, Shuang G, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys & Compounds, 2015, 619:186-194.
[8] 王雷. 铸轧7075铝合金的变形行为及其组织演变的研究[D]. 济南:山东大学, 2016.Wang L. Study on the Hot Deformation Behavior and Microstructural Evolution of 7075 Aluminum Alloy[D]. Jinan:Shandong University, 2016.
[9] 杨栋, 陈文琳, 王少阳, 等. 7075铝合金热变形时动态再结晶晶粒度演化模型[J]. 中国有色金属学报, 2013, 23(10):2747-2753.Yang D, Chen W L, Wang S Y, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals Society, 2013, 23(10):2747-2753.
[10] Jeong H T, Kim H K, Kim W J. Processing maps (with flow instability criterion based on power-law breakdown) integrated into finite element simulations for evaluating the hot workability of 7075 aluminum alloy[J]. Materials Today Communications, 2021, 27:102254.
[11] Wu H, Wen S P, Huang H, et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy[J]. Journal of Alloys & Compounds, 2016, 685:869-880.
[12] Park S Y, Kim W J. Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al-Zn-Mg-Cu (7075) alloys[J]. Journal of Materials Science & Technology, 2016, 32(7):660-670.
[13] Yang Y, Zhang Z, Li X, et al. The effects of grain size on the hot deformation and processing map for 7075 aluminum alloy[J]. Materials & Design, 2013, 51:592-597.
[14] 周芃, 朱荣宇, 石婵, 等. 基于GTN模型的5A06铝合金温成形损伤建模[J]. 塑性工程学报, 2020, 27(12):164-169.Zhou P, Zhu R Y, Shi C, et al. Modeling of warm forming damage of 5A06 aluminum alloy based on GTN model[J]. Journal of Plasticity Engineering, 2020, 27(12):164-169.
[15] 陶志伟, 王雷刚, 杨兴旺, 等. 喷射成形7055铝合金回收粉挤压态的热变形行为[J]. 塑性工程学报, 2022, 29(6):87-93.Tao Z W, Wang L G, Yang X W, et al. Hot deformation behavior of sprayed 7055 aluminum alloy recycled powders as extruded[J].Journal of Plasticity Engineering, 2022, 29(6):87-93.
[16] Yin Z, Pan Q, Li B, et al. Characterization of hot deformation behavior of as-homogenized Al-Cu-Li-Sc-Zr alloy using processing maps[J]. Materials Science & Engineering, 2014, 614:199-206.
[17] 沈智, 石一磬, 周英丽, 等. 6014铝合金热冲压流变行为的本构模型修正[J]. 锻压技术, 2021, 46(12):67-73.Shen Z, Shi Y Q, Zhou Y L, el al. Modification on constitutive model for rheological behavior of 6014 aluminum alloy in hot stamping[J]. Forging & Stamping Technology, 2021, 46(12):67-73.
[18] 仇鹏, 王家毅, 段晓鸽, 等. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8):8106-8112.Qiu P, Wang J Y, Duan X G, el al. Study on hot deformation behavior and microstructure evolution mechanism of AA7021 aluminum alloy[J]. Materials Reports, 2020, 34(8):8106-8112.
[19] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[20] Wei T, Wang Y, Tang Z, et al. The constitutive modeling and processing map of homogenized Al-Mg-Si-Cu-Zn alloy[J]. 2021, 27:102471.
[21] Mc A, Mra B, Shs B, et al. Study on hot deformation behavior of AISI 414 martensitic stainless steel using 3D processing map[J].Journal of Manufacturing Processes, 2020, 56:916-927.
[22] Zhou X, Wang K, Lu S, et al. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy[J]. Journal of Materials Research and Technology, 2020, 9(3):2652-2661.
[23] 周琳, 刘运玺, 陈玮, 等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属, 2022, 46(1):27-35.Zhou L, Liu Y X, Chen W, el al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals, 2022, 46(1):27-35.
[24] Senthilkumar V, Balaji A, Narayanasamy R. Analysis of hot deformation behavior of Al 5083-TiC nanocomposite using constitutive and dynamic material models[J]. Materials & Design, 2012, 37:102-110.

基金

国家自然科学基金资助项目(51874226);西安市科技局科技创新引导项目(201805033YD11CG17(10))
PDF(2641 KB)

596

Accesses

0

Citation

Detail

段落导航
相关文章

/