镁合金原子尺度计算与模拟研究进展

梅婉婉, 李全安, 陈晓亚

材料热处理学报 ›› 2023, Vol. 44 ›› Issue (4) : 1-12.

PDF(1281 KB)
PDF(1281 KB)
材料热处理学报 ›› 2023, Vol. 44 ›› Issue (4) : 1-12. DOI: 10.13289/j.issn.1009-6264.2022-0467
综述

镁合金原子尺度计算与模拟研究进展

  • 梅婉婉1, 李全安1,2,3, 陈晓亚1,2
作者信息 +

Research progress of calculation and simulation in atomic scale of magnesium alloys

  • MEI Wan-wan1, LI Quan-an1,2,3, CHEN Xiao-ya1,2
Author information +
文章历史 +

摘要

随着计算机技术的飞速发展,第一性原理计算与分子动力学模拟的方法在材料设计与机理研究中起到至关重要的作用。本文总结了第一性原理计算在镁合金广义层错能、晶格常数、弹性常数、裂纹形成能等方面的应用,综述了分子动力学模拟在镁合金孪晶界演变与迁移、孪晶界与位错及晶界的交互作用、元素偏析对界面的影响、析出相与孪晶界的交互行为等方面的应用。并对第一性原理计算及分子动力学模拟在镁合金研究中的应用现状与目前仍存在的局限性进行了论述,同时展望了镁合金原子尺度计算与模拟研究的发展前景。

Abstract

With the rapid development of computer technology, the methods of first-principles calculation and molecular dynamics simulation play an important role in material design and mechanism research. This paper summarizes the application of first-principles calculation in magnesium alloys, such as generalized stacking fault energy, lattice constant, elastic constant and crack formation energy. It also summarizes the application of molecular dynamics simulation in magnesium alloys, such as the evolution and migration of twin boundaries, the interaction between twin boundaries and dislocations and grain boundaries, the influence of element segregation on the interface, and the interaction behavior between precipitates and twin boundaries. The application status and limitations of first-principles calculation and molecular dynamics simulation in the magnesium alloys research are discussed, and the development prospect of atomic scale calculation and simulation research of the magnesium alloys is prospected.

关键词

镁合金 / 第一性原理计算 / 分子动力学模拟 / 广义层错能 / 孪晶界演变

Key words

magnesium alloy / first-principles calculation / molecular dynamics simulation / generalized stacking fault energy / twin grain boundary evolution

引用本文

导出引用
梅婉婉, 李全安, 陈晓亚. 镁合金原子尺度计算与模拟研究进展[J]. 材料热处理学报, 2023, 44(4): 1-12 https://doi.org/10.13289/j.issn.1009-6264.2022-0467
MEI Wan-wan, LI Quan-an, CHEN Xiao-ya. Research progress of calculation and simulation in atomic scale of magnesium alloys[J]. Transactions of Materials and Heat Treatment, 2023, 44(4): 1-12 https://doi.org/10.13289/j.issn.1009-6264.2022-0467

参考文献

[1] Song J,Chen J,Xiong X,et al.Research advances of magnesium and magnesium alloys worldwide in 2021[J].Journal of Magnesium and Alloys,2022,10(4):863-898.
[2] Rams J,Torres B,Pulido-González N,et al.Magnesium alloys:Fundamentals and recent advances[J].Encyclopedia of Materials:Metals and Alloys,2022,1:2-10.
[3] Wang X J,Xu D K,Wu R Z,et al.What is going on in magnesium alloys?[J].Journal of Materials Science and Technology,2018,34(2):245-247.
[4] Luo Q,Guo Y,Liu B,et al.Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys:A critical review[J].Journal of Materials Science and Technology,2020,44:171-190.
[5] Duan M,Luo L,Liu Y.Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment:Grain and texture gradient[J].Journal of Alloys and Compounds,2020,823:153691.
[6] Peng Q,Sun Y,Wang J,et al.Structural characteristics of {10 11} contraction twin-twin interaction in magnesium[J].Acta Materialia,2020,192:60-66.
[7] Yang Y,Xiong X,Chen J,et al.Research advances in magnesium and magnesium alloys worldwide in 2020[J].Journal of Magnesium and Alloys,2021,9(3):705-747.
[8] Tong L B,Chu J H,Sun W J,et al.Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing[J].Journal of Magnesium and Alloys,2021,9(3):1007-1018.
[9] Zheng T,Hu Y,Zhang C,et al.A study of high ductility Mg-2Gd-0.4Zr magnesium alloy under monotonic tension at room temperature[J].Materials Characterization,2021,179:111299.
[10] Deng J F,Tian J,Zhou Y,et al.Plastic deformation mechanism and hardening mechanism of rolled Rare-Earth magnesium alloy thin sheet[J].Materials and Design,2022,218:110678.
[11] Baczmański A,Wroński M,Kot P,et al.The role of basal slip in the generation of intergranular stresses in magnesium alloy studied using X-ray diffraction and modelling[J].Materials and Design,2021,202:109543.
[12] Cheng Y,Guo X,Xin Y,et al.Modeling of plastic deformation of magnesium alloys with random texture:A challenge to constitutive model for twinning[J].Materials Today Communications,2022,31:103600.
[13] Yang P,Yang Z,Li L,et al.Towards understanding double extension twinning behaviors in magnesium alloy during uniaxial tension deformation[J].Journal of Alloys and Compounds,2022,894:162491.
[14] Pang H,Mei W W,Li Q A,et al.Plasticity improvement of Mg alloys with alloying atoms (Gd,Y)[J/OL].Physica Status Solidi (b),2022.https://doi.org/10.1002/pssb.202200209.
[15] Wu Z X,Ahmad R,Yin B,et al.Mechanistic origin and prediction of enhanced ductility in magnesium alloys[J].Science,2018,359(6374):447-452.
[16] 兖利鹏,李全安,陈晓亚.剧烈塑性变形工艺加工镁合金的研究进展[J].材料热处理学报,2018,39(11):1-9.YAN Li-peng,LI Quan-an,CHEN Xiao-ya.Research of severe plastic deformation on magnesium alloys[J].Transactions of Materials and Heat Treatment,2018,39(11):1-9.
[17] 王忠堂,张宏亮,王明浩,等.挤压态镁合金板材复合变形过程中的孪晶组织演变规律[J].材料热处理学报,2020,41(2):37-42.WANG Zhong-tang,ZHANG Hong-liang,WANG Ming-hao,et al.Evolution of twin structure in the process of compound deformation of as-extruded magnesium alloy sheet[J].Transactions of Materials and Heat Treatment,2020,41(2):37-42.
[18] Liu G,Zhang J,Xi G,et al.Designing Mg alloys with high ductility:Reducing the strength discrepancies between soft deformation modes and hard deformation modes[J].Acta Materialia,2017,141:1-9.
[19] Zhang J,Dou Y,Dong H.Intrinsic ductility of Mg-based binary alloys:A first-principles study[J].Scripta Materialia,2014,89:13-16.
[20] Zuo E,Dou X,Chen Y,et al.Electronic work function,surface energy and electronic properties of binary Mg-Y and Mg-Al alloys:A DFT study[J].Surface Science,2021,712:121880.
[21] Frenkel J.Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper[J].Zeitschrift fur Physik,1926,37(7):572-609.
[22] Vítek V.Multilayer stacking faults and twins on {211} planes in B.C.C.metals[J].Scripta Metallurgica,1970,4(9):725-732.
[23] Fya B,Lza C,Jm A,et al.Strategy to enhance intrinsic ductility and surface stability of Mg-Zn-R (R=La to Sm) alloys from a first-principles study[J].Computational Materials Science,2019,165:96-100.
[24] Muzyk M,Pakiela Z,Kurzydlowski K J.Generalized stacking fault energy in magnesium alloys:Density functional theory calculations[J].Scripta Materialia,2012,66(5):219-222.
[25] Ding Z,Zhao G,Sun H,et al.Alloying effects on the plasticity of magnesium:comprehensive analysis of influences of all five slip systems[J].Journal of Physics:Condensed Matter,2019,32(1):015401.
[26] Dou Y,Luo H,Zhang J,et al.Generalized stacking fault energy of {10 11} slip system in Mg-based binary alloys:A first principles study[J].Materials,2019,12(9):1548.
[27] Sandlöbes S,Zaefferer S,Schestakow I,et al.On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys[J].Acta Materialia,2011,59(2):429-439.
[28] Sandlöbes S,Friák M,Zaefferer S,et al.The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J].Acta Materialia,2012,60(6):3011-3021.
[29] Sandlöbes S,Friák M,Neugebauer J,et al.Basal and non-basal dislocation slip in Mg-Y[J].Materials Science and Engineering A,2013,576:61-68.
[30] Hauser F,Landon P,Dorn J.Deformation and fracture of alpha solid solutions of lithium in magnesium[J].Trans ASM,1958,50:23-31.
[31] Liu X,Liu Z,Liu G,et al.First-principles study of solid solution strengthening in Mg-X (X=Al,Er) alloys[J].Bulletin of Materials Science,2019,42(1):11-27.
[32] Garg P,Adlakha I,Solanki K N.First-principles investigation of the effect of solutes on the ideal shear resistance and electronic properties of magnesium[J].Magnesium Technology,2019,1920:231-237.
[33] Ganeshan S,Shang S L,Wang Y,et al.Effect of alloying elements on the elastic properties of Mg from first-principles calculations[J].Acta Materialia,2009,57(13):3876-3884.
[34] Yuasa M,Hayashi M,Mabuchi M,et al.Improved plastic anisotropy of Mg-Zn-Ca alloys exhibiting high-stretch formability:A first-principles study[J].Acta Materialia,2014,65:207-214.
[35] Liu Z R,Li D Y.The electronic origin of strengthening and ductilizing magnesium by solid solutes[J].Acta Materialia,2015,89:225-233.
[36] Dai J H,Wu X,Song Y.Influence of alloying elements on phase stability and elastic properties of aluminum and magnesium studied by first principles[J].Computational Materials Science,2013,74:86-91.
[37] Garg P,Adlakha I,Solanki K N.Effect of solutes on ideal shear resistance and electronic properties of magnesium:A first-principles study[J].Acta Materialia,2018,153:327-335.
[38] Shi H L,Xu C,Hu X S,et al.Improving the Young's modulus of Mg via alloying and compositing-A short review[J].Journal of Magnesium and Alloys,2022,10(8):2009-2024.
[39] Chen H L,Lin L,Mao P L,et al.Phase stability,electronic,elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy:A first principles study[J].Journal of Magnesium and Alloys,2015,3(3):197-202.
[40] Kula A,Jia X,Mishra R,et al.Mechanical properties of Mg-Gd and Mg-Y solid solutions[J].Metallurgical and Materials Transactions B,2015,47(2016):3333-3342.
[41] Liu D,Pan H,Meng X.Mechanical properties of Mg-RE (RE=Sc,Y,Gd-Tm) solid solutions:First-principles determination[J].Modelling and Simulation in Materials Science and Engineering,2014,22:055017.
[42] Xing Z,Fan H,Kang G.Molecular dynamics simulations on the intergranular crack propagation of magnesium bicrystals[J].Computational Materials Science,2022,210:111058.
[43] Liu T Y,Wu L,Duan S W,et al.A study on fatigue crack propagation for friction stir welded plate of 7N01 Al-Zn-Mg alloy by EBSD[J].Materials,2020,13(2):330-342.
[44] Tang J J,Yang X B,Ouyang L Z,et al.A systematic first-principles study of surface energies,surface relaxation and Friedel oscillation of magnesium surfaces[J].Journal of Physics D Applied Physics,2014,47(11):323-328.
[45] Siddaiah A,Mao B,Kasar A K,et al.Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy[J].Wear,2020,15:462-463.
[46] Somekawa H,Tsuru T.Effect of twin boundary on crack propagation behavior in magnesium binary alloys:Experimental and calculation studies[J].Scripta Materialia,2017,130:114-118.
[47] Liu W,Wu B Q,Liu H R,et al.Simulation on microstructure evolution and mechanical properties of Mg-Y alloys:Effect of trace Y[J].Transactions of Nonferrous Metals Society of China,2022,32(3):812-823.
[48] Wang X,Hu Y,Yu K,et al.Room temperature deformation-induced solute segregation and its impact on twin boundary mobility in a Mg-Y alloy[J].Scripta Materialia,2022,209:114375.
[49] Barrett C D,El Kadiri H.Impact of deformation faceting on {10 12} embryonic twin nucleation in hexagonal close-packed metals[J].Acta Materialia,2014,70:137-161.
[50] Wang J,Yadav S,Hirth J,et al.Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals[J].Materials Research Letters,2013,1:126-132.
[51] Gong M,Graham J,Taupin V,et al.The effects of stress,temperature and facet structure on growth of {10 12} twins in Mg:A molecular dynamics and phase field study[J].Acta Materialia,2021,208:116603.
[52] Gong M,Liu G,Wang J,et al.Atomistic simulations of interaction between basal dislocations and three-dimensional twins in magnesium[J].Acta Materialia,2018,155:187-198.
[53] Chen Z,Yao J.Molecular dynamics simulation of the effects of temperature on the microscopic deformation of single crystal magnesium containing a void and a crack[J].Journal of Physics Conference Series,2021,1980(1):012020.
[54] Wang J,Beyerlein I J,Tomé C N.Reactions of lattice dislocations with grain boundaries in Mg:Implications on the micro scale from atomic-scale calculations[J].International Journal of Plasticity,2014,56:156-172.
[55] Sun H,Singh C V.A molecular dynamics study of dislocation ejection and shear coupling associated with incoherent twin boundary migration[J].Materialia,2021,16:101111.
[56] Tang J,Xu C,Li Z,et al.Interaction between dislocation loop and {10 12} twin boundary in magnesium[J].Journal of Nuclear Materials,2022,560:153495.
[57] Xie D,Lyu Z,Li Y,et al.In situ monitoring of dislocation,twinning,and detwinning modes in an extruded magnesium alloy under cyclic loading conditions[J].Materials Science and Engineering A,2021,806:140860.
[58] Zhang Z Q,Wang H Y,Wang L,et al.Protein conformation and electric attraction adsorption mechanisms on anodized magnesium alloy by molecular dynamics simulations[J].Journal of Magnesium and Alloys,2022,10(11):3143-3155.
[59] Qi S,Tx C,Li T,et al.Influence of {10 12} twin characteristics on detwinning in Mg-3Al-1Zn alloy[J].Materials Science and Engineering A,2018,735:243-249.
[60] Li B,Ma E.Atomic shuffling dominated mechanism for deformation twinning in magnesium[J].Physical Review Letters,2009,103(3):035503.
[61] Feng X,Pang X,He X,et al.Deformation behavior and dynamic recrystallization of Mg-1Li-1Al alloy[J].Metals,2021,11(11):1696-1696.
[62] Zhou X,Su H,Ye H,et al.Removing basal-dissociated dislocations by {10 12} deformation twinning in magnesium alloys[J].Acta Materialia,2021,217:117170.
[63] Zhang H,Li Y,Liu Y,et al.The effect of basal dislocation on {10 12} twin boundary evolution in a Mg-Gd-Y-Zr alloy[J].Journal of Materials Science and Technology,2021,81:212-218.
[64] Su H,Zhou X,Zhang M,et al.Atomic-resolution studies on reactions of slip dislocations with {10 12} twin boundaries and local plastic relaxation in a Mg alloy[J].Acta Materialia,2021,206:116622.
[65] Dang K,Graham J,McCabe R J,et al.Atomistic and phase field simulations of three dimensional interactions of {10 12} twins with grain boundaries in Mg:Twin transmission and dislocation emission[J].Materialia,2021,20:101247.
[66] Zhang K,Song H Y,Deng Q,et al.Interaction mechanism between twin boundary and crystalline/amorphous interface in dual-phase Mg alloys[J].Journal of Non-Crystalline Solids,2020,534:119954.
[67] Liu X,Chen J,Liu X,et al.Effect of twin boundary-dislocation and twin boundary-solute atom interaction on detwinning of Mg-2Gd-2Y-0.3Zr alloy[J].Journal of Alloys and Compounds,2019,770:483-489.
[68] Knezevic M,Levinson A,Harris R,et al.Deformation twinning in AZ31:Influence on strain hardening and texture evolution[J].Acta Materialia,2010,58(19):6230-6242.
[69] Kim H K,Hwang J H,Jang H S,et al.Dislocation binding as an origin for the improvement of room temperature ductility in Mg alloys[J].Materials Science and Engineering A,2018,715:266-275.
[70] Kadiri H E,Barrett C D,Wang J,et al.Why are {10 12} twins profuse in magnesium?[J].Acta Materialia,2015,85:354-361.
[71] Morishige T,Suzuki Y,Takenaka T.Extra-hardening of SPD-processed Al-Mg alloy with minimum grain sizes[J].Materials Science Forum,2021,1016:952-956.
[72] Zhou B,Li Y,Wang L,et al.The role of grain boundary plane in slip transfer during deformation of magnesium alloys[J].Acta Materialia,2022,227:117662.
[73] Tang J,Fan H,Wei D,et al.Interaction between {10 12} twin boundary and grain boundaries in magnesium[J].International Journal of Plasticity,2020,126:102613.
[74] Miyazawa N,Suzuki S,Mabuchi M,et al.Atomic simulations of the effect of Y and Al segregation on the boundary characteristics of a double twin in Mg[J].Journal of Applied Physics,2017,122(16):165103.
[75] Nie J F,Zhu Y M,Liu J Z,et al.Periodic segregation of solute atoms in fully coherent twin boundaries[J].Science,2013,340(6135):957-960.
[76] Yoshida T,Yuasa M,Mabuchi M,et al.Effect of segregated elements on the interactions between twin boundaries and screw dislocations in Mg[J].Journal of Applied Physics,2015,118(3):034304.
[77] Jang H S,Seol D,Lee B J.A comparative study on grain boundary segregation and solute clustering in Mg-Al-Zn and Mg-Zn-Ca alloys[J].Journal of Alloys and Compounds,2022,894:162539.
[78] Xue C,Li S,Chu Z B,et al.Molecular dynamics study on the effect of temperature on HCP→FCC phase transition of magnesium alloy[J/OL].Journal of Magnesium and Alloys,2022.https://doi.org/10.1016/j.jma.2022.03.013.
[79] Xu W,Zhang B,Du K,et al.Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries[J].Acta Materialia,2022,226:117640.
[80] Koju R K,Mishin Y.Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys[J].Acta Materialia,2020,201:596-603.
[81] Su H,Zhou X,Zheng S,et al.Atomic-resolution investigations on formation and evolution of symmetric tilt grain boundaries near the {10 12} twin orientation in a Mg alloy[J].Scripta Materialia,2020,187:113-118.
[82] Yu X,Zhao Z,Shi D,et al.Formation of optical dark area (ODA) on high-cycle fatigue fracture surface of Al-Cu-Mg alloy at atmosphere induced by inner friction[J].Journal of Materials Research and Technology,2021,11:211-218.
[83] Jung I H,Sanjari M,Kim J,et al.Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg-RE alloys[J].Scripta Materialia,2015,102:1-6.
[84] Yaddanapudi K,Leu B,Kumar M A,et al.Accommodation and formation of {10 12} twins in Mg-Y alloys[J].Acta Materialia,2021,204:116514.
[85] Tong X,You G,Luo J,et al.Rapid cooling effect during solidification on macro-and micro-segregation of as-cast Mg-Gd alloy[J].Progress in Natural Science:Materials International,2021,31(1):68-76.
[86] Barrett C D,Imandoust A,El Kadiri H.The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening[J].Scripta Materialia,2018,146:46-50.
[87] Zheng J K,Zhu C,Li Z,et al.On the strengthening precipitate structures in Mg-Gd-Ag alloy:An atomic-resolution investigation using Cs-corrected STEM[J].Materials Letters,2019,238:66-69.
[88] Gu X F,Furuhara T,Chen L,et al.Study on planar segregation of solute atoms in Mg-Al-Gd alloy system[J].Scripta Materialia,2018,150:45-49.
[89] Basu I,Al-Samman T.Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium[J].Acta Materialia,2014,67(2):116-133.
[90] Kim K H,Hwang J H,Jang H S,et al.Dislocation binding as an origin for the improvement of room temperature ductility in Mg alloys[J].Materials Science and Engineering A,2018,715:266-275.
[91] Li Z,Tian X,Tang J,et al.Molecular dynamics simulations on the dislocation interactions in magnesium[J].Computational Materials Science,2021,197:110597.
[92] Jang H S,Lee B J.Effects of Zn on slip and grain boundary segregation of Mg alloys[J].Scripta Materialia,2019,160:39-43.
[93] Fan H,Zhu Y,El-Awady J A,et al.Precipitation hardening effects on extension twinning in magnesium alloys[J].International Journal of Plasticity,2018,106:186-202.
[94] Fan H,Zhu Y,Wang Q.Effect of precipitate orientation on the twinning deformation in magnesium alloys[J].Computational Materials Science,2018,155:378-382.

基金

国家自然科学基金(52201119);中原英才计划-中原青年拔尖人才(豫通组[2021]44号);河南省自然科学基金(222300420435)
PDF(1281 KB)

1064

Accesses

0

Citation

Detail

段落导航
相关文章

/