基于修正Voce模型的2A12铝合金流动应力模型

陈学文, 张家银, 皇涛, 宋克兴, 朱红亮, 杜昱青

材料热处理学报 ›› 2019, Vol. 40 ›› Issue (6) : 170-176.

PDF(7616 KB)
PDF(7616 KB)
材料热处理学报 ›› 2019, Vol. 40 ›› Issue (6) : 170-176. DOI: 10.13289/j.issn.1009-6264.2018-0544
材料模拟计算

基于修正Voce模型的2A12铝合金流动应力模型

  • 陈学文, 张家银, 皇涛, 宋克兴, 朱红亮, 杜昱青
作者信息 +

Flow stress model of 2A12 aluminum alloy based on modified Voce model

  • CHEN Xue-wen, ZHANG Jia-yin, HUANG Tao, SONG Ke-xing, ZHU Hong-liang, DU Yu-qing
Author information +
文章历史 +

摘要

在温度20~175℃、应变速率0.01~1 s-1、变形量为50%条件下,采用Gleeble-1500 D热模拟试验机对2A12铝合金进行了压缩实验。结果表明:2A12铝合金在该变形条件下有明显软化效应,同一应变速率下,温度由20℃升高到175℃,材料峰值应力平均降低了60 MPa。采用考虑软化系数的Voce模型建立了2A12铝合金的流动应力模型,模拟得到的流动应力值与实验值的相关系数达到0.99。基于构建的流动应力模型,采用有限元模拟软件DEFORM-3D对2A12铝合金试样在温度为20℃、应变速率为0.1 s-1的条件下进行了压缩模拟。通过对比相同变形条件下的实验与有限元模拟得到的行程载荷曲线,平均相对误差为4.78%,验证了所构建的流动应力模型的准确性,为2A12铝合金冷变形加工工艺的制定提供了理论依据。

Abstract

The compression test of 2A12 aluminum alloy was carried out with Gleeble-1500-D thermal simulator under the conditions of deformation temperature of 20-175 ℃, strain rate of 0.01-1 s-1 and deformation of 50%. The results show that the 2A12 aluminum alloy has obvious softening effect under this deformation condition. At the same strain rate, the temperature increases from 20 ℃ to 175 ℃, the peak stress of the alloy decreases by 60 MPa on average. The flow stress model of the 2A12 aluminum alloy was established by using the Voce model with softening coefficient taken into account. The correlation coefficient between the simulated flow stress value and the experimental value is 0.99. Based on the established flow stress model, the finite element simulation software DEFORM-3D was used to simulate the compression of the 2A12 aluminum alloy samples under the conditions of deformation temperature of 20 ℃ and strain rate of 0.1 s-1. The average relative error is 4.78% by comparing the travel load curve obtained under the same deformation condition with the finite element simulation, which verifies the accuracy of the established flow stress model. It provides a theoretical basis for the development of cold deformation processing technology of the 2A12 aluminum alloy.

关键词

2A12铝合金 / 有限元模拟 / Voce模型 / 冷变形

Key words

2A12 aluminum alloy / finite element simulation / Voce model / cold forming

引用本文

导出引用
陈学文, 张家银, 皇涛, 宋克兴, 朱红亮, 杜昱青. 基于修正Voce模型的2A12铝合金流动应力模型[J]. 材料热处理学报, 2019, 40(6): 170-176 https://doi.org/10.13289/j.issn.1009-6264.2018-0544
CHEN Xue-wen, ZHANG Jia-yin, HUANG Tao, SONG Ke-xing, ZHU Hong-liang, DU Yu-qing. Flow stress model of 2A12 aluminum alloy based on modified Voce model[J]. Transactions of Materials and Heat Treatment, 2019, 40(6): 170-176 https://doi.org/10.13289/j.issn.1009-6264.2018-0544

参考文献

[1] Chen J H,Xu W F,Xie R Z,et al.Sample size effect on the dynamic torsional behaviour of the 2A12 aluminium alloy[J].Theoretical & amp; Applied Mechanics Letters,2017,7(6):317-324.
[2] 王雷,杜蒙,谭昊,等.应变速率及温度对等径通道挤压2A12铝合金力学性能的影响(英文)[J].材料热处理学报,2018,39(5):126-133. WANG Lei,DU Meng,TAN Hao,et al.Influence of strain rate and temperature on mechanical properties of 2A12 aluminum alloys after equal channel angular pressing[J].Transactions of Materials and Heat Treatment,2018,39(5):126-133.
[3] 李先梦,湛利华,申儒林,等.2A12硬铝合金热拉伸流变行为及本构建模[J].锻压技术,2017,42(4):159-164. LI Xian-meng,ZHAN Li-hua,SHEN Ru-lin,et al.Hot tensile flow behavior and constitutive model of aluminum alloy 2A12[J].Forging and Stamping Technology,2017,42(4):159-164.
[4] 刁普.轧制生产线是提高硬合金板带产量和成材率的关键[J].轻合金加工技术,2006,34(9):22-23. DIAO Pu.Raise finished product ratio and productivity of hard alloy strips in rolling production line[J].Light Alloy Fabrication Technology,2006,34(9):22-23.
[5] Zhang D H,Bai D P,Liu J,et al.Formability behaviors of 2A12 thin-wall part based on DYNAFORM and stamping experiment[J].Composites Part B Engineering,2013,55(9):591-598.
[6] 王元岳.2A12铝合金0.3 mm薄板的冷轧制工艺技术[J].轻合金加工技术,2003,31(3):46-46. WANG Yuan-yue.Cold rolling technology of 2A12 aluminum alloy 0.3 mm sheet[J].Light Alloy Fabrication Technology,2003,31(3):46-46
[7] 李世海.2A12铝合金盒形件充液拉深成形过程研究[D].哈尔滨:哈尔滨工业大学,2013. LI Shi-hai.Investigation on hydro-drawing of 2A12 aluminum alloy box-shaped part[D].Harbin:Harbin Institute of Technology,2013.
[8] 易幼平,杨积慧,蔺永诚.7050铝合金热压缩变形的流变应力本构方程[J].材料工程,2007(4):20-22. YI You-ping,YANG Ji-hui,LIN Yong-cheng.Flow stress constitutive equation of 7050 aluminum alloy during hot compression[J].Journal of Materials Engineering,2007(4):20-22.
[9] Deng Y,Yin Z,Huang J.Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature[J].Materials Science and Engineering:A,2011,528(3):1780-1786.
[10] 肖罡,李落星,叶拓.基于材料参数修正的6013铝合金热变形本构模型优化[J].中国有色金属学报,2014(6):1393-1400. X1AO Gang,LI Luo-xing,YE Tuo.Optimization of constitutive equation during hot deformation of 6013 aluminum alloy based on modified material parameters[J].The Chinese Journal of Nonferrous Metals,2014,24(6):1393-1400.
[11] 吴文祥,韩逸,钟皓,等.2026铝合金热压缩变形流变应力行为[J].中国有色金属学报,2009,19(8):1403-1408. WU Wen-xiang,HAN Yi,ZHONG Hao,et al.Flow stress behavior of 2026 aluminium alloy under hot compression deformation[J].The Chinese Journal of Nonferrous Metals,2009,19(8):1403-1408.
[12] 张伟,魏刚,肖新科.2A12铝合金本构关系和失效模型[J].兵工学报,2013,34(3):276-282. ZHANG Wei,WEI Gang,XIAO Xin-ke.Constitutive relation and fracture criterion of 2A12 aluminum alloy[J].Acta Armamentarii,2013,34(3):276-282.
[13] 刘文辉,张平,杨迅雷,等.基于反求法的7055铝合金Johnson-Cook本构模型研究[J].兵器材料科学与工程,2015(4):5-9. LIU Wen-hui,ZHANG Ping,YANG Xun-lei,et al.Johnson Cook model for 7055 aluminum alloy based on reverse method[J] Ordnance Material Science and Engineering,2015,38(4):5-9.
[14] 李宏烨,庄新村,赵震.材料常用流动应力模型研究[J].模具技术,2009(5):1-4. LI Hong-ye,ZHUANG Xin-cun,ZHAO Zhen.Research on material flow stress models in common use[J].Die and Mould Technology,2009(5):1-4.
[15] Kleemola H J,Nieminen M A.On the strain-hardening parameters of metals[J].Metallurgical Transactions A (Physical Metallurgy and Materials,Science),1974,5(8):1863-1866.
[16] 董万鹏,陈军.不锈钢流动应力模型分析[J].计算机仿真,2010,27(4):80-83. DONG Wan-peng,CHEN Jun.Analysis for flow stress models of stainless steel[J].Computer Simulation,2010,27(4):80-83.
[17] Shastry C G,Mathew M D,Rao K B S,et al.Analysis of elevated temperature flow and work hardening behaviour of service-exposed 2.25Cr-1Mo steel using Voce equation[J].International Journal of Pressure Vessels and Piping,2004,81(3):297-301.
[18] Sainath G,Choudhary B K,Christopher J,et al.Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel[J].International Journal of Pressure Vessels and Piping,2015,132-133:1-9.
[19] Zhang C,Chu X,Guines D,et al.Dedicated linear-Voce model and its application in investigating temperature and strain rate effects on sheet formability of aluminum alloys[J].Materials and Design,2015,67:522-530.
[20] 李贤睿,方文利,唐鼎,等.铝合金微通道扁管热挤压成形数值模拟[J].塑性工程学报,2017,24(5):1-6. LI Xian-rui,FANG Wen-li,TANG Ding,et al.Numerical simulation on hot extrusion forming of aluminum alloy micro-multiport profile[J].Journal of Plasticity Engineering,2017,24(5):1-6.
[21] 董湘怀.金属塑性成形原理[M].北京:机械工业出版社,2011.
[22] 蔡志伟,陈拂晓,郭俊卿.AZ41M镁合金热变形行为及本构方程[J].材料热处理学报,2015,36(11):65-71. CAI Zhi-wei,CHEN Fu-xiao,GUO Jun-qing.Hot deformation behavior and constitutive equation of AZ41M magnesium alloy[J].Transactions of Materials and Heat Treatment,2015,36(11):65-71.
[23] 肖罡,李落星,刘志文,等.6013铝合金的热变形行为及热加工图[J].材料热处理学报,2014,35(10):23-28. XIAO Gang,LI Luo-xing,LIU Zhi-wen,et al.Hot deformation behavior and processing map of 6013 aluminum alloy[J].Transactions of Materials and Heat Treatment,2014,35(10):23-28.
[24] Liu Z G,Lasne P,Massoni E.Formability study of magnesium alloy AZ31B[C]// American Institute of Physics,2011:150-157.
[25] Mandal S,Rakesh V,Sivaprasad P V,et al.Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J].Materials Science and Engineering A,2009(1/2):114-121.
[26] Wei G,Peng X,Hadadzadeh A,et al.Constitutive modeling of Mg-9Li-3Al-2Sr-2Y at elevated temperatures[J].Mechanics of Materials,2015,89:241-253.

基金

国家自然科学基金(51575162);河南省自然科学基金(162300410085)
PDF(7616 KB)

202

Accesses

0

Citation

Detail

段落导航
相关文章

/