为提高异步电机气隙偏心故障诊断的可靠性,提出一种基于振动信号融合分析的异步电机气隙偏心故障诊断方法。首先,采集不同偏心故障类型下的径向电磁力和不平衡磁拉力信号;其次,对信号进行融合相关分析,建立不同信号间的相关关系;最后,通过振动信号融合相关谱图可判断电机是否存在偏心故障及偏心故障的类型。该方法通过对故障特征信号的融合相关分析,能够突出故障特征频率分量,降低故障识别难度。通过仿真分析,验证了该方法的有效性和实用性,对于电机运行状态的准确监测具有重要意义。
Abstract
Aiming to improve the reliability of the fault diagnosis of induction motor air gap eccentricity,this paper proposed a fault diagnosis method of induction motor air-gap eccentricity based on vibration signal fusion analysis.Firstly,the radial electromagnetic force and unbalanced magnetic pull signals under different types of eccentricity fault are collected.Then,the fusion correlation analysis of the signals is carried out to establish the correlation between different signals.Lastly,the eccentricity fault and the type of eccentricity fault can be judged by the vibration signal fusion correlation spectrum.Through the fusion correlation analysis of fault characteristic signals,this method can highlight the fault characteristic frequency components and reduce the difficulty of fault identification.Through simulation analysis,the effectiveness and practicability of the method are verified,and it is of great significance for the accurate monitoring of the motor running state.
关键词
故障诊断 /
异步电机 /
气隙偏心 /
径向电磁力 /
不平衡磁拉力 /
信号融合
{{custom_keyword}} /
Key words
fault diagnosis /
induction motor /
air-gap eccentricity fault /
radial electromagnetic force /
unbalanced magnetic pull /
signal fusion
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王臻, 李承, 王蕾.基于流方的笼型异步电机转子故障诊断[J].电机与控制应用, 2014, 41(7):43-48.
[2] CAMERON J R, THOMSON W T, DOW A B.Vibration and current monitoring for detecting air-gap eccentricity in large induction motors[J].IEEE Proceedings B, Electric Power Applications, 1986, 133(3):155-163.
[3] JOKSIMOVIC G M, DUROVIC M D, PENMAN J, et al.Dynamic simulation of dynamic eccentricity in induction machines-winding function approach[J].IEEE Transactions on Energy Conversion, 2000, 15(2):143-148.
[4] 唐贵基, 何玉灵, 万书亭, 等.气隙静态偏心与定子短路复合故障对发电机定子振动特性的影响[J].振动工程学报, 2014, 27(1):118-127.
[5] 常悦, 徐正国.基于振动信号分析的感应电机气隙偏心故障诊断[J].上海应用技术学院学报(自然科学版), 2015, 15(2):135-138.
[6] 曾冲, 黄嵩, 杨永明.永磁同步电机定子齿磁通分析与偏心故障在线诊断[J].哈尔滨工业大学学报, 2020, 52(3):186-194.
[7] BAO X H, CHENG Z H.Eccentricity fault diagnosis based on dual signal analysis in large submersible motor[J].Journal of Electrical Engineering, 2016, 11(7):23-31.
[8] 魏闻达.三相异步电机转子故障分析与诊断方法研究[D].武汉:华中科技大学, 2015.
[9] 侯新国, 吴正国, 夏立, 等.基于相关分析的感应电机定子故障诊断方法研究[J].中国电机工程学报, 2005(4):85-88.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划(2018YFB0904800);国家自然科学基金资助项目(51677078)
{{custom_fund}}