为探讨橡胶密封件与金属法兰之间的黏附效应产生的原因及黏附效应对密封的影响,根据硅橡胶密封结构的使用特点,设计硅橡胶密封圈与金属法兰在不同温度、不同时间下的黏附实验。通过硅橡胶密封圈与防锈铝合金和2种不锈钢材料的对比实验发现,硅橡胶密封圈与不锈钢金属法兰易发生黏附,与防锈铝合金金属法兰不易发生黏附。通过对金属法兰表面接触角测试,得出金属表面能越大、氧化层越稀疏,黏附越容易发生。研究表明,硅橡胶密封圈长期与金属法兰接触产生的黏附效应是界面之间存在化学键导致,且这种化学反应是在一定温度下、随着时间增加而加剧。密封圈力学分析和密封结构泄漏率测试结果表明:无论黏附效应是否发生,结构的静密封性能不会发生改变。
Abstract
In order to explore the causes of adhesion between rubber seal and metal flange and the influence of adhesion on sealing, according to the use characteristics of silicone rubber sealing structure, adhesion experiments between the silicon rubber sealing ring and the metal flange at different temperatures and times were designed.Through the comparative experiments of silicon rubber sealing ring with anti-rust aluminum alloy and two kinds of stainless steel materials, it is found that the silicone rubber sealing ring is prone to adhere to the stainless steel flange and is not prone to adhere to the anti-rust aluminum alloy metal flange.By testing the contact angle of metal flange surface, it is concluded that the greater the surface energy and the thinner the oxide layer, the easier the adhesion occurs.It is shown that the adhesion of silicone rubber seal ring in long-term contact with metal flange is caused by the existence of chemical bond between the interface, and this chemical reaction intensifies with the increase of time at a certain temperature.The results of mechanical analysis on sealing structure and sealing ring leakage test show that the static sealing performance of the sealing structure will not change whether adhesion occurs or not.
关键词
硅橡胶 /
金属 /
黏附 /
表面能 /
密封
{{custom_keyword}} /
Key words
silicone rubber /
metal /
adhesion /
surface energy /
seal
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NIKIFOROVA N A, SHERYSHEV M A.Estimation of the adhesion strength of rubber-metal bonds[J].Polymer Science Series D, 2012, 5(1):53-59.
[2] YAN L K, KOU K C, JI T Z, et al.Application of a new modified epoxy adhesive for bonding fluorine rubber to metal[J].Journal of Adhesion Science and Technology, 2007, 21(15):1483-1496.
[3] SALAM M A E, KHALIEL J A, HASSAN H H.Factors affecting the adhesive force between metallic substrate and carbon black filled rubber composites[J].Journal of Reinforced Plastics and Composites, 2013, 32(13):974-986.
[4] OHKUBO Y, SHIBAHARA M, ISHIHARA K, et al.Effect of rubber compounding agent on adhesion strength between rubber and heat-assisted plasma-treated polytetrafluoroethylene (PTFE)[J].The Journal of Adhesion, 2019, 95(3):242-257.
[5] SOUID A, SARDA A, DETERRE R, et al.Influence of reversion on adhesion in the rubber-to-metal vulcanization-bonding process[J].Polymer Testing, 2015, 41:157-162.
[6] 王鹏,苏正涛,赖亮庆,等.硫化压力对橡胶/金属热硫化粘接剥离强度的影响[J].航空材料学报,2016, 36(1):69-74. WANG P, SU Z T, LAI L Q, et al.Impact of curing pressure on peel strength of hot-curing metal/rubber adhesive joint[J].Journal of Aeronautical Materials, 2016, 36(1):69-74.
[7] KASPEROVICH A V, KROTOVA O A, POTAPOV E E, et al.A study of the influence of a new promoter on the adhesion of rubber to a metal cord[J].Polymer Science Series D, 2016, 9(1):68-71.
[8] 黄蓉蓉,颜录科,李力,等.丁腈橡胶与金属粘接的研究进展[J].黏接, 2015, 36(9):87-91. HUANG R R, YAN L K, LI L, et al.Advance in bonding metal to nitrile rubber[J].Adhesion, 2015, 36(9):87-91.
[9] 赵志正.丁腈橡胶在长期与金属接触条件下的粘接性能[J].世界橡胶工业, 2004, 31(1):4-5.
[10] 韩建崴.非极性硫化橡胶与45#钢的粘接[D].沈阳:东北大学, 2008. HAN J W.Bond of non-polarity vulcanized rubber and 45# steel[D].Shenyang:Northeastern University, 2008.
[11] 阿弗鲁辛科.橡胶密封[M].刘耀祖,译.北京:机械工业出版社, 1983.
[12] 刘嘉,苏正涛,栗付平.航空橡胶与密封材料[M].北京:国防工业出版社, 2011.
[13] WAKE W C.Bonds between rubber and metal[J].Nature, 1960, 186(4720):189.
[14] 汪凌燕.天然橡胶与金属热硫化粘接机理及工艺参数优化研究[D].西安:西安电子科技大学, 2010. WANG L Y.Study on adhesion mechanisms and technological parameters optimization of heat vulcanization of natural rubber and metal composite structure[D].Xi'an:Xidian University, 2010.
[15] 肖稳.不锈钢化学钝化及硅烷处理的耐蚀性研究[D].北京:机械科学研究总院, 2017. XIAO W.Research on the corrosion resistance of stainless steel with chemical passivation and silane treatment[D].Beijing:China Academy of Machinery Science&Technology, 2017.
[16] 罗晓斌,朱定一,乔卫,等.高表面能固体的润湿性实验及表面张力计算[J].材料科学与工程学报, 2008, 26(6):932-936. LUO X B, ZHU D Y, QIAO W, et al.Wettability of high surface energy solid and its surface tension calculation[J].Journal of Materials Science and Engineering, 2008, 26(6):932-936.
[17] 胡红雨.金属基体上低表面能表面的制备研究[D].大连:大连理工大学, 2008. HU H Y.Study on fabrication of low-surface-energy surface on metallic substrate[D].Dalian:Dalian University of Technology, 2008.
[18] 王松.铝基超疏水表面疏水性分析及抗冰霜特性研究[D].大连:大连理工大学, 2014. WANG S.The hydrophobicity analysis and anti-frost characteristics research of super-hydrophobic aluminum surfaces[D].Dalian:Dalian University of Technology, 2014.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}