Review of Electromechanical Coupling Technologies of High-performance Electronic Equipment
XU Wanye1,2, DUAN Baoyan1,2
Author information+
1. State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071; 2. Research Institute on Mechatronics, Xidian University, Xi'an 710071
High-performance electronic equipment(HPEE) is extensively applied in the areas of radar, deep-space detection, radio astronomy, communication, navigation, remote sensing and so on. Its design and manufacturing capabilities are the important sign of national scientific and technological level and strength. The development of mechatronics of HPEE is reviewed in term of design, and the three phases, i.e., Independent/Syntheses/Coupling between mechanical and electronic technologies (IMET/SMET/CMET), are described. The distinct evolution progress in mechatronic is shown, and the connotation and advantage of CMET of electronic equipment are revealed. On this basis, with typical cases such as reflector antenna, planar slot antenna(PSA) and active phased array antenna(APAA), the electromagnetic field-displacement field-temperature field coupling model of HPEE is mathematically deduced. The influence mechanism(IM) of nonlinear mechanical & structural factors on the electromagnetic performance of HPEE of PSA and APAA is revealed. Finally, aiming at the future development, the new challenges in electromechanical coupling theories and technologies are proposed.
XU Wanye, DUAN Baoyan.
Review of Electromechanical Coupling Technologies of High-performance Electronic Equipment[J]. Journal of Mechanical Engineering, 2023, 59(20): 338-356 https://doi.org/10.3901/JME.2023.20.338
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 段宝岩. 电子机械的现状与发展[J]. 电子机械工程,2004,20(3):14-20. DUAN Baoyan. The state-of-the-art and new researching directions of electromechanical engineering[J]. Electro-Mechanical Engineering,2004,20(3):14-20. [2] DUAN B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis[J]. Mechatronics,1999,9(1):53-64. [3] DUAN B Y,ZHAO Y Z,WANG,et al. Study of the line feed for large radio telescope from the view point of mechanical and structural engineering[C]//Proceedings of the 3rd Meeting of the LTWG and of a Workshop on Spherical Radio Telescope,1995:85-102. [4] DUAN B Y,QIU Y Y,ZHANG F S,et al. On design and experiment of the feed cable-suspended structure for super antenna[J]. Mechatronics,2009,19(4):503-509. [5] KILDAL P S. Foundations of antenna engineering:A unified approach for line-of-sight and multipath[M]. New York:Artech House,2015. [6] XU Q,WANG N. Challenges for QTT structure[C]//Ground-based & Airborne Telescopes VI. International Society for Optics and Photonics,2016,9906:1936-1945. [7] BAARS J W M. The paraboloidal reflector antenna in radio astronomy and communication[M]. New York:Springer,2007. [8] HERNER S. Design of large steerable antennas[J]. The Astronomical Journal,1967,72:35-47. [9] FENG S F,WANG C S,DUAN B Y,et al. Design of tipping structure for 110m high-precision radio telescope[J]. Acta Astronautica,2017,141:50-56. [10] XU W,DUAN B Y,LI P,et al. Integrated optimum design of metal space frame radomes with variable size members involving electromagnetic and structural analysis[J]. IET Microwaves,Antennas & Propagation,2017,11(11):1565-1571. [11] KARCHER H J,BAARS J W M. Ideas for future large single dish radio telescopes[C]//Ground-based and Airborne Telescopes V. SPIE,2014,9145:13-23. [12] OHNISHI K,SHIBATA M,MURAKAMI T. Motion control for advanced mechatronics[J]. IEEE/ASME Transactions on Mechatronics,1996,1(1):56-67. [13] BENNEY R,STEIN K. A computational fluid-structure interaction model for parachute inflation[J]. Journal of Aircraft,1996,33:730-736. [14] BOUJOT J. Mathematical formulation of fluid-structure interaction problems[J]. Mathematical Modeling and Numerical Analysis,1987,21:239-260. [15] MOLLER H,LUND E. Shape sensitivity analysis of strongly coupled fluid-structure interaction problems[C]//The 8th AIAA/USAF/NASA/ISSMO Symposiumon Multidisciplinary Analysis and Optimization,2000,9:6-8. [16] 段宝岩,宋立伟. 电子装备机电热多场耦合问题初探[J]. 电子机械工程,2008,24(3):1-7. DUAN Baoyan,SONG Liwei. On coupled multi-field problems in electronic equipment[J]. Electro-Mechanical Engineering,2008,24(3):1-7. [17] RUZE J. The effect of aperture errors on the antenna radiation pattern[J]. Nuovo Cimento,1952,9(3):364-380. [18] RUZE J. Antenna tolerance theory-a review[J]. Proceedings of the IEEE,1966,54(4):633-642. [19] WANG H S C. Performance of phased-array antennas with mechanical errors[J]. IEEE Transactions on Aerospace and Electronic Systems,1992,28(2):535-545. [20] LEVY R. Structural engineering of microwave antennas for electrical,mechanical,and civil engineers[M]. New York:IEEE Press,1996. [21] RAHMAT-SAMII Y,GALINDO-ISRAEL V. Shaped reflector antenna analysis using the Jacobi-Bessel series[J]. IEEE Transactions on Antennas and Propagation,1980,28(4):425-435. [22] DUAN D W,RAHMAT-SAMII Y. A generalized diffraction synthesis technique for high performance reflector antennas[J]. IEEE Transactions on Antennas and Propagation,1995,43(1):27-40. [23] MARTINEZ-LORENZO J A,PINO A G,I. VEGA I,et al. Icara:Induced-current analysis of reflector antennas[J]. IEEE Antennas and Propagation Magazine,2005,47(2):92-100. [24] ZARGHAMEE M,ANTEBI J. On the surface accuracy and beam position of Cassegrain antennas[C]//Antennas and Propagation Society International Symposium. IEEE,1984,22:777-779. [25] MARTINEZ‐LORENZO J A,RAPPAPORT C M,PINO A G. Reflector antenna distortion determination:An iterative‐field‐matrix solution[J]. Radio Science,2008,43(4):1-13. [26] LIU J S. Hollaway,integrated structure-electromagnetic optimization of large reflector antenna systems[J]. Structural optimization,1998,16(1):29-36. [27] PADULA S L,ADELMAN H M,BAILEY M C,et al. Integrated structural electromagnetic shape control of large space antenna reflectors[J]. AIAA journal,1989,27(6):814-819. [28] RAO S,SHAFAI L,SHARMA S K. Handbook of reflector antennas and feed systems volume III:Applications of reflectors[M]. New York:Artech House,2013. [29] HOFERER R,RAHMAT-SAMII Y. Subreflector shaping for antenna distortion compensation:An efficient Fourier-Jacobi expansion with GO/PO analysis[J]. IEEE Transactions on Antennas and Propagation,2003,50(12):1676-1687. [30] HADDADI A,GHORBANI A. Distorted reflector antennas:Analysis of radiation pattern and polarization performance[J]. IEEE Transactions on Antennas and Propagation,2016,64(10):4159-4167. [31] YANG D W,ZHANG S X,LI T J,et al. Preliminary design of paraboloidal reflectors with flat facets[J]. Acta Astronautica,2013,89(8):14-20. [32] DUAN B Y,WANG C S. Reflector antenna distortion analysis using MEFCM[J]. IEEE Transactions on Antennas and Propagation,2009,57(10):3409-3413. [33] ZONG Y,DUAN B Y,BAN Y,et al. Surface configuration design of cable-network reflectors considering the radiation pattern[J]. IEEE Transactions on Antennas and Propagation,2014,62(6):3163-3173. [34] WANG C S,DUAN B Y,ZHANG F S,et al. Coupled structural–electromagnetic–thermal modelling and analysis of active phased array antennas[J]. IET Microwaves,Antennas & Propagation,2010,4(2):247-257. [35] LIAN P Y,DUAN B Y,WANG W,et al. A pattern approximation method for distorted reflector antennas using piecewise linear fitting of the exponential error term[J]. IEEE Transactions on Antennas and Propagation,2015,63(10):4546-4551. [36] SMITH W T,BASTIAN R J. An approximation of the radiation integral for distorted reflector antennas using surface-error decomposition[J]. IEEE Transactions on Antennas and Propagation,1997,45(1):5-10. [37] WANG C S,ZHENG F,ZHANG F S. On divided-fitting method of large distorted reflector antennas based Coons surface[C]//Proceedings of IEEE Radar Conference. IEEE,2008:1-5. [38] GONZALEZ-VALDES B,MARTINEZ-LORENZO J,RAPPAPORT C,et al. A new physical optics based approach to subreflector shaping for reflector antenna distortion compensation[J]. IEEE Transactions on Antennas and Propagation,2013,61(1):467-472. [39] ZHANG S X,DUAN B Y,BAO H,et al. Sensitivity analysis of reflector antennas and its application on shaped Geo-Truss unfurlable antennas[J]. IEEE Transactions on Antennas and Propagation,2013,61(11):5402-5407. [40] 段宝岩. 电子装备机电耦合研究的现状与发展[J]. 中国科学:信息科学,2015,45(1):1-14. DUAN Baoyan. Review of electromechanical coupling of electronic equipment[J]. Scientia SINICA (Informationis),2015,45(1):1-14. [41] DUAN B Y,TAN J R. Special issue on electromechanical coupling design for electronic equipment[J]. Chinese Journal of Mechanical Engineering. 2017,30(3):495-496. [42] YUAN P,Liu Z,TAN J R. Shape error analysis of functional surface based on isogeometrical approach[J]. Chinese Journal of Mechanical Engineering,2017,30:544-552. [43] FU C,XU Y,JIANG C,et al. Improved differential evolution with shrinking space technique for constrained optimization[J]. Chinese Journal of Mechanical Engineering,2017,30:553-565. [44] LOU S,DUAN B Y,WANG W,et al. Analysis of finite antenna arrays using the characteristic modes of isolated radiating elements[J]. IEEE Transactions on Antennas and Propagation,2019,67(3):1582-1589. [45] 段宝岩,宋立伟. 多物理场场耦合问题的建模与求解[C]//庆祝中国力学学会成立50周年暨中国力学学会学术大会,2007:54. DUAN Baoyan,SONG Liwei. Modelling and solution of multi-field-coupling problems[C]//To Celebrate the 50th Anniversary of the Establishment of Chinese Mechanics Society and the Academic Conference of Chinese Mechanics Society,2007:54. [46] WANG C S,DUAN B Y,QIU Y Y. On distorted surface analysis and multidisciplinary structural optimization of large reflector antennas[J]. International Journal of Structural and Multidisciplinary Optimization,2007,33(6):519-528. [47] 姜世波. 电子设备三场耦合分析研究[D]. 西安:西安电子科技大学,2009. JIANG Shibo. Research on Three-field-coupling analysis for electronic equipments[D]. Xian:Xidian University,2009. [48] HERMANN G M,NIEKAMAP R,STEINDORF J. Algorithms for strong coupling procedures[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:2028-2049. [49] NERON D,LADEVEZE P,SCHREFLER A. A computational strategy suitable for multiphysics problems[J]. Histology & Histopathology,2002,3(1):1-5. [50] WANG C S,DUAN B Y,QIU Y Y,et al. On coupled structural-electromagnetic optimization and analysis of large reflector antennas[C]//The 8th International Conference on Frontiers of Design and Manufacturing (ICFDM2008),2008:613-617. [51] WANG C S. Analysis and coupling optimization design of intelligent antenna structural systems in satellite[C]//The 26th AIAA International Communications Satellite Systems Conference (ICSSC 2008),2008:1-8. [52] WANG C S,BAO H,WANG W. Coupled structural-electromagnetic optimization and analysis of space intelligent antenna structural systems[C]//The 9th Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA08),2008:269-273. [53] 王从思,段宝岩,郑飞,等. 大型空间桁架面天线的结构—电磁耦合优化设计[J]. 电子学报,2008,36(9):1776-1781. WANG Congsi,DUAN Baoyan,ZHENG Fei. Mechatronics optimization design and analysis of large space parabolic antennas with active truss support structures[J]. Acta Electronica Sinica,2008,36(9):1776-1781. [54] 王从思,段宝岩,仇原鹰. Coons曲面结合B样条拟合大型面天线变形反射面[J]. 电子与信息学报,2008,30(1):233-237. WANG Congsi,DUAN Baoyan,QIU Yuanying. On new fitting method of large distorted antenna reflectors based on coons surface and B-spline[J]. Journal of Electronics & Information Technology,2008,30(1):233-237. [55] 宋立伟,段宝岩,郑飞,等. 表面误差对反射面天线电性能的影响[J]. 电子学报,2009,37(3):552-556. SONG Liwei,DUAN Baoyan,ZHENG Fei,et al. The effect of surface error on reflector antenna performance[J]. Acta Electronica Sinica,2009,37(3):552-556. [56] 宋立伟,段宝岩. 反射面表面与馈源误差对天线方向图的影响[J]. 系统工程与电子技术,2009,31(6):1269-1274. SONG Liwei,DUAN Baoyan. Effects of reflector errors and phase center errors of feed on the far-field pattern of reflector antennas[J]. Systems Engineering and Electronics,2009,31(6):1269-1274. [57] 宋立伟,段宝岩. 变形反射面天线馈源最佳相位中心的研究[J]. 北京理工大学学报,2009,29(10):894-897. SONG Liwei,DUAN Baoyan. A study on the optimal feeds phase center for distorted reflector antennas[J]. Transactions of Beijing institute of technology,2009,29(10):894-897. [58] 宋立伟,郑飞. 基于离散网格的机电耦合问题分析[J]. 西安电子科技大学学报,2009,36(2):347-352. SONG Liwei,ZHENG Fei. Analysis of the coupled problems between structure and electromagnetism based on discrete meshes[J]. Journal of Xidian University,2009,36(2),347-352. [59] 王从思,李昕桉,张福顺,等. 矩形有源相控阵天线的结构与电磁耦合建模与分析[C]//第十届全国雷达学术年会,2008:1429-1432. WANG Congsi,LI Xinan,ZHANG Fushun,et al. On coupled structural-electromagnetic modeling and analysis of rectangular active phased array antennas[C]//The 10th National Radar Academic Annual Conference,2008:1429-1432. [60] 李昕桉,姜华,张福顺,等. 机电热场耦合研究综述[J]. 电波科学学报,2007,22(增刊):31-34. LI Xinan,JIANG Hua,ZHANG Fushun,et al. A review of structural-electromagnetic-thermal field coupling[J]. Chinese Journal of Radio Sciences,2007,22(Suppl.):31-34. [61] SONG L W. Performance of planar slotted waveguide arrays with surface distortion. Progress[C]//In Electromagnetic Research Symposium,2010. [62] SONG L W. Analysis of integrated structure- electromagnetic wave basing on the same discrete meshes. Progress[C]//In Electromagnetic Research Symposium,2010. [63] WANG C S,DUAN B Y,ZHANG F S,et al. Analysis of performance of active phased array antennas with distorted plane error[J]. International Journal of Electronics,2009,96(5):549-559. [64] 王从思,平丽浩,王猛,等. 基于阵元互耦的相控阵天线结构变形影响分析[C]//2009年全国天线年会,2009:762-765. WANG Congsi,PING Lihao,WANG Meng,et al. On analysis of distorted phased array antennas based on element coupling[C]//2009 National Antenna Annual Conference,2009:762-765. [65] DUAN B Y,WANG C S. Analysis and optimization design of multi-field coupling problem in electronic equipment[C]//International Workshop 2007:Advancements in Design Optimization of Materials,Structures and Mechanical Systems,2007:252-261. [66] DUAN B Y. The multi-field-coupled model and optimization of absorbing material’s position and size of electronic equipment[J]. Journal of Mechatronics and Applications,2010:1-6. [67] 段宝岩. 空间太阳能发电卫星的几个理论与关键技术问题[J]. 中国科学-技术科学,2018,48(11):1207-1218. DUAN Baoyan. The main aspects of the theory and key technologies about space solar power satellite[J]. Scientia SINICA (Technologica),2018,48(11):1207-1218. [68] 杨阳,段宝岩,黄进,等. OMEGA型空间太阳能电站聚光系统设计[J]. 中国空间科学技术,2014,34(5):18-23. YANG Yang,DUAN Baoyan,HUANG Jin,et al. SSPS-OMEGA:A new concentrator system for SSPS[J]. Chinese Space Science and Technology,2014,34(5):18-23. [69] DUAN B Y. On new development of Space Solar Power Station (SSPS) of China[C]//Keynote speech at the National Space Society’s 36th International Space Development Conference (ISDC’2017),2017:1-85. [70] LI X,DUAN B Y,SONG L W,et al. Study of stepped amplitude distribution taper for microwave power transmission for SSPS[J]. IEEE Transaction on Antennas and Propagation,2017,65(10):5396-5405. [71] DUAN B Y. The Updated SSPS-OMEGA design project and the latest development of China[C]//Keynote speech at the 3rd Asia Wireless Power Transmit (AWPT2019),2019:1-95. [72] LI X,DUAN B Y,SONG L W. Design of clustered planar arrays for microwave wireless power transmission[J]. IEEE Transaction on Antennas and Propagation,2019,67(1):606-611. [73] 段宝岩. 迈向机电耦合的机电一体化技术[J]. 科技导报,2021,39(5):1-2. DUAN B Y. Electromechanical integration technology towards electromechanical coupling[J]. Science & Technology Review,2021,39(5):1-2.