Development of Three Matching Layer Broadband Medical Ultrasonic Phased Array Transducer with 2-2 Piezoelectric Ceramic Composite

ZHANG Hao, ZHAO Cheng, SHI Xiumei, ZENG Tao

Materials For Mechanical Engineering ›› 2020, Vol. 44 ›› Issue (6) : 88-92.

PDF(1934 KB)
PDF(1934 KB)
Materials For Mechanical Engineering ›› 2020, Vol. 44 ›› Issue (6) : 88-92. DOI: 10.11973/jxgccl202006019

Development of Three Matching Layer Broadband Medical Ultrasonic Phased Array Transducer with 2-2 Piezoelectric Ceramic Composite

  • ZHANG Hao1, ZHAO Cheng1, SHI Xiumei2, ZENG Tao1
Author information +
History +

Abstract

A three matching layer structure broadband medical phased array transducer was developed with 2-2 piezoelectric ceramic composite by three matching layer design scheme and KLM model optimization method. According to the design parameters, the medical phased array transducer was actually manufactured. The results show that the center frequency of actually produced medical phased array transducer was 2.95 MHz, and the relative bandwidth at -6 dB was about 83.2%, which were basically consistent with the theoretical design results (3.05 MHz, 87.8%) and met the design requirements. The transducer is expected to be used for imaging diagnosis of heart diseases.

Key words

medical phased array transducer / bandwidth / three matching layer structure

Cite this article

Download Citations
ZHANG Hao, ZHAO Cheng, SHI Xiumei, ZENG Tao. Development of Three Matching Layer Broadband Medical Ultrasonic Phased Array Transducer with 2-2 Piezoelectric Ceramic Composite[J]. Materials For Mechanical Engineering, 2020, 44(6): 88-92 https://doi.org/10.11973/jxgccl202006019

References

[1] CROSS L E.Relaxor ferroelectrics[J].Ferroelectrics, 1987,76(1):241-267.
[2] 张章.弛豫铁电单晶PMNT在医用相控阵超声换能器中的应用研究[D].北京:中国科学院大学,2018.
[3] KINGON A I,CLARK J B.Sintering of PZT ceramics:I,atmosphere control[J].Journal of the American Ceramic Society, 1983,66(4):253-256.
[4] PARK S E,SHROUT T R.Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J].Journal of Applied Physics, 1997,82(4):1804-1811.
[5] HAYWARD G,BENNETT J.Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers[J].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control, 1996,43(1):98-108.
[6] SMITH W A,AULD B A.Modeling 1-3 composite piezoelectrics:Thickness-mode oscillations[J].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control, 1991,38(1):40-47.
[7] 仲林建, 陈俊波, 王世全. 1-3型压电复合材料的制备及性能分析[J]. 声学与电子工程, 2007(1):33-36.
[8] 党长久,李明轩.1-3型压电复合材料[J].应用声学,1995,14(1):2-7.
[9] 高峰, 申扣喜. 2-2压电复合材料的静水压电性能研究[C]//2009年全国水声学学术交流会. 大连:中国声学学会,2009:61-63.
[10] 辛菲,陈文革.2-2型PZT/环氧树脂复合压电材料的研究[J].压电与声光,2015,37(4):646-649.
[11] 张亚鑫, 吴浩东. 2-2压电复合材料机电耦合系数有限元分析[C]//中国声学学会2010年全国会员代表大会暨学术会议论文集.哈尔滨:中国声学学会,2010:472-473.
[12] 水永安,薛强.2-2结构压电复合材料的机电耦合系数研究[J].中国科学E辑:技术科学,1996,26(4):304-310.
[13] 栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,2005.
[14] ZHOU Q F,LAM K H,ZHENG H R,et al.Piezoelectric single crystal ultrasonic transducers for biomedical applications[J].Progress in Materials Science, 2014,66:87-111.
[15] MASON W.Electromechanical transducers and wave filters[M]. New York: Van Bistrabd D. Company Inc., 1942.
[16] KRIMHOLTZ R,LEEDOM D A,MATTHAEI G L.New equivalent circuits for elementary piezoelectric transducers[J].Electronics Letters, 1970,6(13):398.
[17] REDWOOD M.Experiments with the electrical analog of a piezoelectric transducer[J].The Journal of the Acoustical Society of America, 1964,36(10):1872-1880.
[18] 伍于添.医学超声设备:原理·设计·应用[M].北京:科学技术文献出版社,2012.
[19] CASTILLO M,ACEVEDO P,MORENO E.KLM model for lossy piezoelectric transducers[J].Ultrasonics, 2003,41(8):671-679.
[20] OAKLEY C G.Calculation of ultrasonic transducer signal-to-noise ratios using the KLM model[J].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control, 1997,44(5):1018-1026.
PDF(1934 KB)

992

Accesses

0

Citation

Detail

Sections
Recommended

/