热处理工艺模拟专用材料数据库的设计与实现

张伦凤, 王治涵, 赵俊渝, 安康, 徐骏, 顾剑锋

金属热处理 ›› 2023, Vol. 48 ›› Issue (9) : 247-252.

PDF(498 KB)
PDF(498 KB)
金属热处理 ›› 2023, Vol. 48 ›› Issue (9) : 247-252. DOI: 10.13251/j.issn.0254-6051.2023.09.042
计算机应用

热处理工艺模拟专用材料数据库的设计与实现

  • 张伦凤1, 王治涵1, 赵俊渝2, 安康2, 徐骏1, 顾剑锋1
作者信息 +

Design and implementation of materials database for heat treatment process simulation

  • Zhang Lunfeng1, Wang Zhihan1, Zhao Junyu2, An Kang2, Xu Jun1, Gu Jianfeng1
Author information +
文章历史 +

摘要

材料参数是热处理工艺模拟中至关重要的数据支撑, 但目前国内相关的材料数据库十分缺乏, 少数现有数据库存在数据准确性低、完整性差、无法共享等问题, 且仅通过化学成分区分材料, 无法应对热处理工艺模拟对参数的需求。为此, 设计出以化学成分与微观组织为主的数据结构体, 自主开发了一款在线的专用材料数据库。该数据库针对热处理工艺模拟所需的材料参数特性, 优化设计了数据存储结构。采用B/S架构设计实现了数据共享, 同时提高了数据使用便捷性。另外, 该数据库通过采用数据挖掘技术, 引入了多元线性回归、贝叶斯线性回归、决策树和随机森林4种机器学习算法, 建立了一种创新的数据提取机制。可通过对现有数据的应用分析确定有效的数据提取策略, 进而获取当前所需的实际数据, 初步解决了当前普遍存在的数据缺失问题, 有力支撑了热处理工艺模拟的开展。

Abstract

Material parameters are the crucial data support in heat treatment process simulation. However, at present, there is a lack of relevant material databases in China, and a few existing databases have problems such as low data accuracy, poor integrity, and inability to share data, they only distinguish materials based on chemical composition, which cannot meet the parameter requirements of heat treatment process simulation. Therefore, a data structure focusing on chemical composition and microstructure was designed, and an online special material database was also independently developed. The database optimizes the data storage structure according to the characteristics of material parameters required for heat treatment process simulation. Adopting B/S architecture design realizes data sharing and improves the convenience of data use. Furthermore, by using data mining technology, the database introduces four machine learning algorithms: multivariable linear regression, Bayesian linear regression, decision tree, and random forest, and establishes an innovative data extraction mechanism. The effective data extraction strategy can be determined through the application analysis of existing data, and then the actual data requires at present can be obtained, which preliminarily solves the problem of data missing currently, and strongly supports the development of heat treatment process simulation.

关键词

材料数据库 / 热处理 / 机器学习 / 数据挖掘

Key words

material database / heat treatment / machine learning / data mining

引用本文

导出引用
张伦凤, 王治涵, 赵俊渝, 安康, 徐骏, 顾剑锋. 热处理工艺模拟专用材料数据库的设计与实现[J]. 金属热处理, 2023, 48(9): 247-252 https://doi.org/10.13251/j.issn.0254-6051.2023.09.042
Zhang Lunfeng, Wang Zhihan, Zhao Junyu, An Kang, Xu Jun, Gu Jianfeng. Design and implementation of materials database for heat treatment process simulation[J]. Heat Treatment of Metals, 2023, 48(9): 247-252 https://doi.org/10.13251/j.issn.0254-6051.2023.09.042

参考文献

[1] Karditsas P J, Lloyd G, Walters M, et al. The european fusion material properties database[J]. Fusion Engineering Design, 2006, 81(8/14): 1225-1229.
[2] 李姿昕, 张 能, 熊 斌, 等. 材料科学数据库在材料研发中的应用与展望[J]. 数据与计算发展前沿, 2020, 2(2): 78-90. Li Zixin, Zhang Neng, Xiong Bin, et al. Materials science database in material research and development: Recent applications and prospects[J]. Frontiers of Data and Computing, 2020, 2(2): 78-90.
[3] 尹海清, 姜 雪, 张瑞杰, 等. 材料科学数据共享网及其在材料行业创新发展中的应用[J]. 中国科技资源导刊, 2016, 48(3): 58-65, 71. Yin Haiqing, Jiang Xue, Zhang Ruijie, et al. National materials scientific data sharing network and its application to innovative development of materials industries[J]. Chian Science and Technology Resources Review, 2016, 48(3): 58-65, 71.
[4] 刘芳宁, 王 越, 孙瑞侠. 材料数据库的现状与发展趋势[J]. 科技创新导报, 2018, 15(34): 149-151.
[5] 杨 丽, 苏 航, 柴 锋, 等. 材料数据库和数据挖掘技术的应用现状[J]. 中国材料进展, 2019, 38(7): 672-681, 650. Yang Li, Su Hang, Chai Feng, et al. Material database and application status of data mining technology[J]. Materials China, 2019, 38(7): 672-681, 650.
[6] Varol T, Canakci A, Ozsahin S. Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks[J]. Journal of Alloys and Compounds, 2018, 739: 1005-1014.
[7] Hayajneh M T, Hassan A M, Mayyas A T. Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 559-565.
[8] Wilson G, Aruliah D A, Brown C T, et al. Best practices for scientific computing[J]. PLoS Biology, 2014, 12(1): 1001745.
[9] 杨克功.钢的等温转变曲线[M]. 哈尔滨: 黑龙江人民出版社, 1981.
[10] Faber F A, Hutchison L, Huang B, et al. Prediction errors of molecular machine learning models lower than hybrid dft error[J]. Journal of Chemical Theory and Computation, 2017, 13(11): 5255-5264.
[11] Moot T, Isayev O, Call R W, et al. Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode[J]. Materials Discovery, 2016, 6: 9-16.
[12] 文 成. 基于机器学习的高熵合金成分设计与性能优化[D]. 北京: 北京科技大学, 2022.
[13] Li K Q, Liu Y, Kang Q. Estimating the thermal conductivity of soils using six machine learning algorithms[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106139.
[14] Press C.Bayesian Data Analysis[M]. Third Edition. Crc Press, 2005.
[15] Huang X, Wang H, Xue W, et al. A combined machine learning model for the prediction of time-temperature-transformation diagrams of high-alloy steels[J]. Journal of Alloys and Compounds, 2020, 823: 153694.
[16] Speiser J L, Miller M E, Tooze J, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134: 93-101.

基金

国家重点研发计划(2018YFA0702905)
PDF(498 KB)

219

Accesses

0

Citation

Detail

段落导航
相关文章

/