Research and development of advanced thermal barrier coating materials and preparation technology

HE Ming-tao, MENG Hui-min, WANG Yu-chao, REN Peng-wei

Powder Metallurgy Technology ›› 2019, Vol. 37 ›› Issue (1) : 62-67.

PDF(1022 KB)
PDF(1022 KB)
Powder Metallurgy Technology ›› 2019, Vol. 37 ›› Issue (1) : 62-67. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.011

Research and development of advanced thermal barrier coating materials and preparation technology

  • HE Ming-tao, MENG Hui-min, WANG Yu-chao, REN Peng-wei
Author information +
History +

Abstract

Thermal barrier coatings (TBCs) can effectively improve the operation temperature and service life of aero-engine hot end components. At present, yttria-stabilized zirconia (YSZ) is the most widely used thermal barrier coating materials. Phase transformation of YSZ occurs when the service temperature is higher than 1200℃, which seriously affects the service life and service safety of the aero-engines, and it is difficult to meet the service requirements of new generation of aero-engines. The investigation on the advanced thermal barrier coating materials (TBCs) was summarized in this paper. The research progress of several novel thermal barrier coating candidates were mainly reviewed, such as multiple oxide co-droped YSZ, A2B2O7-type compounds, perovskites, magnetoplumbite compounds, and new bond coating materials. The preparation principles and advantage-disadvantage of thermal barrier coatings were discussed. At last, the development direction of thermal barrier coating materials and preparation technology were also proposed.

Key words

thermal barrier coatings / preparation technology / ceramic materials / bond coating

Cite this article

Download Citations
HE Ming-tao, MENG Hui-min, WANG Yu-chao, REN Peng-wei. Research and development of advanced thermal barrier coating materials and preparation technology[J]. Powder Metallurgy Technology, 2019, 37(1): 62-67 https://doi.org/10.19591/j.cnki.cn11-1974/tf.2019.01.011

References

[1] Kawasaki A, Watanabe R. Cyclic thermal fracture behavior and spallation life of PSZ/NiCrAlY functionally graded thermal barrier coatings. Mater Sci Forum, 1999, 308-311:402
[2] Zhang M, Liu G Q, Hu B F, et al. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy. Powder Metall Technol, 2018, 36(3):223(张明,刘国权,胡本芙,等.新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证.粉末冶金技术, 2018, 36(3):223)
[3] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566):280
[4] Jiao H B, Mo S. Present status and development trend of aircraft turbine engine. Aeronaut Manuf Technol, 2015(12):62(焦华宾,莫松.航空涡轮发动机现状及未来发展综述.航空制造技术, 2015(12):62)
[5] Huang L L, Meng H M, Chen L. Research status of hexaaluminate thermal barrier coatings with magnetoplumbite structure. J Mater Eng, 2013(12):92(黄亮亮,孟惠民,陈龙.磁铅石结构六铝酸盐热障涂层的研究现状.材料工程, 2013(12):92)
[6] Kokini K, DeJonge J, Rangaraj S, et al. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surf Coat Technol, 2002, 154(2-3):223
[7] Kvernes I, Forseth S. Corrosion mechanisms of ceramic coatings in diesel engines. Mater Sci Eng, 1987, 88:61
[8] Ji X J, Gong S K, Xu H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion. Acta Aeronaut Astronaut Sin, 2007, 28(1):196(冀晓鹃,宫声凯,徐惠彬,等.添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响.航空学报, 2007, 28(1):196)
[9] Li Q L, Liu H F. Microstructure and properties of plasma sprayed Sc2O3-Y2O3-ZrO2 TBCs. Therm Spray Technol, 2016, 8(1):17(李其连,刘怀菲.等离子喷涂Sc2O3-Y2O3-ZrO2热障涂层组织结构和性能研究.热喷涂技术, 2016, 8(1):17)
[10] Rauf A, Yu Q, Jin L, et al. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scr Mater, 2012, 66(2):109
[11] Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, et al. Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification. Opt Lasers Eng, 2012, 50(5):780
[12] Qu Z X, Sparks T D, Pan W, et al. Thermal conductivity of the gadolinium calcium silicate apatites:Effect of different point defect types. Acta Mater, 2011, 59(10):3841
[13] Lv Y H, Zhang Q F. Current research status and development trend of advanced thermal barrier coatings. Powder Metall Ind, 2015, 25(1):8(吕艳红,张启富.新型热障涂层研究现状及发展趋势.粉末冶金工业, 2015, 25(1):8)
[14] Chi W G, Sampath S, Wang H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J Am Ceram Soc, 2008, 91(8):2636
[15] Qu Z X, Wan C L, Pan W. Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7. Chem Mater, 2007, 19(20):4913
[16] Mu R D, Xu Z H, He S M, et al. La2(Zr0.7Ce0.3)2O7-a new oxide ceramic material for thermal barrier coatings. J Mater Eng, 2009(7):67(牟仁德,许振华,贺世美,等. La2(Zr0.7Ce0.3)2O7-新型高温热障涂层.材料工程, 2009(7):67)
[17] Ma W, Song F Y, Dong H Y, et al. Thermophysical properties of Y2O3 and Gd2O3 co-doped SrZrO3 thermal barrier coating material. J Inorg Mater, 2012, 27(2):209(马文,宋峰雨,董红英,等. Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能.无机材料学报, 2012, 27(2):209)
[18] Guo L, Guo H B, Ma G H, et al. Ruddlesden-Popper structured BaLa2Ti3O10, a highly anisotropic material for thermal barrier coatings. Ceram Int, 2012, 38(5):4345
[19] Xie X Y, Guo H B, Gong S K, et al. Lanthanum-titanium-aluminum oxide:a novel thermal barrier coating material for applications at 1300℃. J Eur Ceram Soc, 2011, 31(9):1677
[20] Zhu R X, Liu Z G, Ouyang J H, et al. Preparation and characterization of LnMgAl11O19(Ln=La, Nd, Gd) ceramic powders. Ceram Int, 2013, 39(8):8841
[21] He M T, Meng H M, Wang Y C, et al. Synthesis mechanism and preparation of LaMgAl11O19 powder for plasma spraying. Mater Res Express, 2018, 5(6):065021
[22] Wang Y H, Ouyang J H, Liu Z G. Preparation and thermo-physical properties of La1-xNdxMgAl11O19(x=0, 0.1, 0.2) ceramics. J Alloys Compd, 2009, 485(1-2):734
[23] Zhang J F, Zhong X H, Cheng Y L, et al. Thermal-shock resistance of LnMgAl11O19(Ln=La, Nd, Sm, Gd) with magnetoplumbite structure. J Alloys Compd, 2009, 482(1-2):376
[24] Nicholls J R, Lawson K J, Johnstone A, et al. Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol, 2002, 151-152:383
[25] He J Q. First-Principles Study on Structures and Properties of NiAl with Rare Earth Element Doping[Dissertation]. Harbin:Harbin Institute of Technology, 2013(何君琦.稀土掺杂NiAl金属间化合物结构和性能的第一性原理研究[学位论文].哈尔滨:哈尔滨工业大学, 2013)
[26] Guo H B, Zhang T, Wang S X, et al. Effect of Dy on oxide scale adhesion of NiAl coatings at 1200℃. Corros Sci, 2011, 53(6):2228
[27] Guo H B, Cui Y J, Peng H, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy. Corros Sci, 2010, 52(4):1440
[28] Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater, 2000, 48(15):3963
[29] Dong H, Yang G J, Li C X, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs. J Am Ceram Soc, 2014, 97(4):1226
[30] Yu H T, Song X W, Mu R D, et al. Research of YSZ thermal barrier coatings produced by EB-PVD. Chin Rare Earth, 2011, 32(3):40(于海涛,宋希文,牟仁德,等.电子束物理气相沉积YSZ热障涂层研究.稀土, 2011, 32(3):40)
[31] Goto T. Thermal barrier coatings deposited by laser CVD. Surf Coat Technol, 2005, 198(1-3):367
[32] Wang S L. Preparation and Anti-Ablation Properties of SiC and ZrC Coatings though Chemical Vapor Deposition[Dissertation]. Xi'an:Northwestern Polytechnical University, 2015(王少龙.化学气相沉积SiC和ZrC涂层的制备及抗烧蚀性能[学位论文].西安:西北工业大学, 2015)
[33] Morks M F, Fahim N F, Muster T, et al. In-situ synthesis of functional silica nanoparticles for enhancement the corrosion resistance of TBCs. Surf Coat Technol, 2013, 225:106
[34] Dou J Y, Liu G H, Pang M, et al. Research on structure characteristics of CoCrTaAlY coatings by semiconductor laser cladding. Appl Laser, 2017, 37(1):32(窦俊雅,刘光华,庞铭,等.半导体激光熔覆CoCrTaAlY涂层结构特征的研究.应用激光, 2017, 37(1):32)
PDF(1022 KB)

1124

Accesses

0

Citation

Detail

Sections
Recommended

/