Abstract:The wear particles in oil can reflect the wear condition of engine and other equipment. In order to realize the on-line monitoring of metal wear particles in oil, a mathematical model of three coil sensor is established based on the principle of electromagnetic induction. The optimal structural parameters of the sensor (inner diameter, gap, width, etc.) are analyzed by simulation. The coherent demodulation model is used to extract the wear particle signal, and the generation principle of wear particle signal is analyzed. The system adopts multi-layer shielding structure, which can effectively reduce the external magnetic field interference. The designed sensor detection system is connected to the oil circuit of the fan gearbox for relevant experiments. The experiments show that the system can effectively extract the wear particle signal, and the wear particle signal is affected by the wear particle speed and size at the same time. It can realize the detection of 187 μm ferromagnetic metal wear particles and 578 μm non ferromagnetic metal wear particles under the flow rate of 1-18 L/min. Subsequently, BP neural network can be used to identify the characteristic parameters of oil metal wear particles adaptively, which provides theoretical and technical support for the development of oil wear particles on-line monitoring equipment in the future, and provides an important basis for fault diagnosis of mechanical equipment.
牛泽, 李凯, 白文斌, 孙圆圆, 龚卿青, 韩焱. 金属材料表面残余应力超声测量方法[J]. 机械工程学报, 2021, 57(12): 126-135.
NIU Ze, LI Kai, BAI Wenbin, SUN Yuanyuan, GONG Qingqing, HAN Yan. Design of Inductive Sensor System for Wear Particles in Oil. Journal of Mechanical Engineering, 2021, 57(12): 126-135.
[1] 郭静英, 赵志龙, 陈森, 等. 二节螺线管式润滑油金属颗粒传感器研究[J]. 仪表技术与传感器, 2018(1):13-16. GUO Jingying, ZHAO Zhilong, CHEN Sen, et al. Research on two-section solenoid type lubricating oil metal particle sensor[J]. Instrument Technology and Sensor, 2018(1):13-16. [2] 张勇, 司二伟, 李国盛, 等. 润滑油金属磨粒传感器设计及试验研究[J]. 润滑与密封, 2017, 42(4):89-94. ZHANG Yong, SI Erwei, LI Guosheng, et al. Design and experimental study of lubricating oil metal abrasive sensor[J]. Lubrication and Sealing, 2017, 42(4):89-94. [3] 曾霖, 张洪朋, 滕怀波, 等. 一种船机油液多污染物检测新方法研究[J]. 机械工程学报, 2018, 54(12):125-132. ZENG Lin, ZHANG Hongpeng, TENG Huaibo, et al. Research on a new method for detecting multiple pollutants in marine oil[J]. Journal of Mechanical Engineering, 2018, 54(12):125-132. [4] 孙衍山, 杨昊, 佟海滨, 等. 航空发动机滑油磨粒在线监测[J]. 仪器仪表学报, 2017, 38(7):1561-1569. SUN Yanshan, YANG Hao, TONG Haibin, et al. Online monitoring of aero-engine lubricant oil wear particles[J]. Chinese Journal of Scientific Instrument, 2017, 38(7):1561-1569. [5] DING Y, WANG Y, XIANG J. An online debris sensor system with vibration resistance for lubrication analysis[J]. Review of entific Instruments, 2016, 87(2):1590-1597. [6] 莫固良, 汪慧云, 李兴旺, 等. 飞机健康监测与预测系统的发展及展望[J]. 振动、测试与诊断, 2013, 33(6):925-930. MO Guliang, WANG Huiyun, LI Xingwang, et al. The development and prospect of aircraft health monitoring and prediction systems[J]. Vibration, Testing and Diagnosis, 2013, 33(6):925-930. [7] 李萌, 郑长松, 李和言, 等. 电感式磨粒在线监测传感器的激励特性分析[J]. 传感器与微系统, 2014, 33(6):19-22, 30. LI Meng, ZHENG Changsong, LI Heyan, et al. Analysis of excitation characteristics of inductive wear particle online monitoring sensors[J]. Sensors and Microsystems, 2014, 33(6):19-22, 30. [8] FAN X, LIANG M, YEAP T. A joint time-invariant wavelet transform and kurtosis approach to the improvement of in-line oil debris sensor capability[J]. Smart Materials & Structures, 2009, 18(8):1-13. [9] MURALI S, JAGTIANI A V, XIA G, et al. A microfluidic Coulter counting device for metal wear detection in lubrication oil[J]. Review of Scientific Instruments, 2009, 80(1):016105. [10] 孙广涛, 张洪朋, 顾长智, 等. 高精度微流体多参数液压油检测芯片设计[J]. 仪器仪表学报, 2019, 40(2):59-66. SUN Guangtao, ZHANG Hongpeng, GU Changzhi, et al. Design of high-precision microfluidic multi-parameter hydraulic oil detection chip[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):59-66. [11] 马来好, 张洪朋, 乔卫亮, 等. 双螺线管套管结构的液压油金属颗粒检测传感器[J]. 仪器仪表学报, 2019, 40(7):216-223. MA Laihao, ZHANG Hongpeng, QIAO Weiliang, et al. Hydraulic oil metal particle detection sensor with double solenoid casing structure[J]. Chinese Journal of Scientific Instrument, 2019, 40(7):216-223. [12] 白晨朝, 张洪朋, 曾霖, 等. 双螺线圈式液压油微污染物检测传感器[J]. 仪器仪表学报, 2019, 40(6):16-22. BAI Chenchao, ZHANG Hongpeng, ZENG Lin, et al. Double spiral coil type hydraulic oil micro-pollutant detection sensor[J]. Chinese Journal of Scientific Instrument, 2019, 40(6):16-22. [13] 史皓天, 张洪朋, 曾霖, 等. 采用柱形极板的电容式油液检测传感器[J]. 仪表技术与传感器, 2019(8):8-12. SHI Haotian, ZHANG Hongpeng, ZENG Lin, et al. Capacitive oil detection sensor using columnar plates[J]. Instrument Technology and Sensor, 2019(8):8-12. [14] 虞子雷, 张洪朋, 曾霖, 等. 基于微流控谐振式芯片的金属颗粒检测[J]. 电子测量与仪器学报, 2017, 31(10):1627-1632. YU Zilei, ZHANG Hongpeng, ZENG Lin, et al. Metal particle detection based on microfluidic resonant chip[J]. Journal of Electronic Measurement and Instrument, 2017, 31(10):1627-1632. [15] 张洪朋, 白晨朝, 孙广涛, 等. 高通量微型多参数油液污染物检测传感器[J]. 光学精密工程, 2018, 26(9):2237-2245. ZHANG Hongpeng, BAI Chenchao, SUN Guangtao, et al. High-throughput miniature multi-parameter oil contaminant detection sensor[J]. Optics and Precision Engineering, 2018, 26(9):2237-2245. [16] 郑长松, 李萌, 高震, 等. 电感式磨粒传感器磨感电动势提取方法[J]. 振动. 测试与诊断, 2016, 36(1):36-41, 196. ZHENG Changsong, LI Meng, GAO Zhen, et al. Method for extracting the electromotive force of the inductive wear sensor[J]. Vibration. Test and Diagnosis, 2016, 36(01):36-41, 196. [17] 吴超, 郑长松, 马彪. 电感式磨粒传感器中铁磁质磨粒特性仿真研究[J]. 仪器仪表学报, 2011, 32(12):2774-2780. WU Chao, ZHENG Changsong, MA Biao. Simulation study on the characteristics of ferromagnetic wear particles in an inductive wear particle sensor[J]. Chinese Journal of Scientific Instrument, 2011, 32(12):2774-2780. [18] 把鑫, 王吉芳, 左云波, 等. 基于FPGA的油液在线监测系统[J]. 仪表技术与传感器, 2015(6):103-106. BA Xin, WANG Jifang, ZUO Yunbo, et al. On-line oil monitoring system based on FPGA[J]. Instrumentation Technology and Sensors, 2015(6):103-106. [19] 游修东, 陈勇, 陈遥沛. 近距离磁感应线圈的磁场计算与仿真分析[J]. 水雷战与舰船防护, 2017, 25(1):54-59. YOU Xiudong, CHEN Yong, CHEN Yaopei. Magnetic field calculation and simulation analysis of close-range magnetic induction coils[J]. Mine Warfare and Ship Protection, 2017, 25(1):54-59. [20] 高震, 郑长松, 贾然, 等. 综合传动油液金属磨粒在线监测传感器研究[J]. 广西大学学报, 2017, 42(2):409-418. GAO Zhen, ZHENG Changsong, JIA Ran, et al. Research on on-line monitoring sensor for metal wear particles in comprehensive transmission oil[J]. Journal of Guangxi University, 2017, 42(2):409-418. [21] 于振南, 刘倩, 高秀晓, 等. 基于低通滤波的相敏检波算法改进与实现[J]. 测井技术, 2018, 42(5):568-570, 576. YU Zhennan, LIU Qian, GAO Xiuxiao, et al. Improvement and realization of phase-sensitive detection algorithm based on low-pass filtering[J]. Logging Technology, 2018, 42(5):568-570, 576. [22] 范红波, 张英堂, 李志宁, 等. 电感式磨粒传感器中铁磁质磨粒的磁特性研究[J]. 摩擦学学报, 2009, 29(5):452-457. FAN Hongbo, ZHANG Yingtang, LI Zhining, et al. Study on the magnetic properties of ferromagnetic wear particles in inductive wear particle sensors[J]. Acta Tribology, 2009, 29(5):452-457. [23] FAN Hongbo, ZHANG Yingtang, LI Zhining, et al. Design and noise control of the portable wear debris concentration detector[C]//2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009:206-209. [24] DUKA K, GERRIT J. Advanced oil debris monitoring for pipeline mechanical drive gas turbines[C/CD]//Asme Turbo Expo:Power for Land, Sea, & Air, 2000. [25] 左云波, 谷玉海, 王立勇. 电磁式油液金属磨粒检测系统研究[J]. 设备管理与维修, 2018(13):21-23. ZUO Yunbo, GU Yuhai, WANG Liyong. Research on electromagnetic oil metal debris detection system[J]. Equipment Management and Maintenance, 2018(13):21-23. [26] DU Li, ZHU Xiaoliang, HAN Yu, et al. Improving sensitivity of an inductive pulse sensor for detection of metallic wear debris in lubricants using parallel LC resonance method[J]. Measurement Science and Technology, 2013, 24(7):075106. [27] CAO Yunpeng, LIU Rui, DU Jianwei, et al. Gas turbine bearing wear monitoring method based on magnetic plug inductance sensor[C/CD]//ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. 2018.