Please wait a minute...

机械工程学报  2021, Vol. 57 Issue (2): 179-189    DOI: 10.3901/JME.2021.02.179
  运载工程 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池极速自加热中的电-热耦合特性及建模
熊瑞, 马骕骁, 陈泽宇, 孙逢春
北京理工大学机械与车辆学院 北京 100081
Electrochemical Thermal Coupling Characteristics and Modeling for Lithium-ion Battery Operating with Extremely Self-fast Heating
XIONG Rui, MA Suxiao, CHEN Zeyu, SUN Fengchun
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
全文: PDF(984 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 动力电池低温下充放电时存在严重析锂、内阻增大、容量骤降等现象,导致其低温应用时能量不足,性能衰退增速以及安全事故频发等问题。针对当前锂离子动力电池低温加热速度慢制约全气候应用的难题,发现电触发极速生热特性,开发了间歇式极速加热系统;设计出系统的加热试验方法研究极速生热行为,明晰加热频率、占空比以及初始电量对电池温升速率和安全性的影响规律;发现加热温升与占空比和初始电量均呈正相关,加热使用的周期性电流是影响温升的关键,精确控制电流是加热策略实施的基础;建立低温加热电化学-热耦合模型,分析加热过程中颗粒锂离子浓度分布,结果表明,提出的极速加热方法不影响活性颗粒整体可循环锂浓度,证实了加热频率及占空比对加热效果的影响规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊瑞
马骕骁
陈泽宇
孙逢春
关键词 电动车辆锂离子电池低温加热极速加热安全电化学-热耦合模型    
Abstract:The serious lithium plating, high internal impedance and available capacity plummeting of the battery at low temperature condition lead to the shortage of energy, performance degradation and the aggravation of the potential safety problems. Aiming at the problem that the heating speed under low temperature condition of lithium-ion battery is slow, which restricts the application in the all-climate environment. The characteristics of extremely fast heat generation by electric trigger heating method are discovered, by which an intermittent fast heating system for battery is developed. A systematic heating experiment is designed to study the extremely fast heat generation behavior, and the effects of heating frequency, duty cycle and initial state of charge on the temperature rise and safety of the battery are clarified. It is found that the heating temperature rise has obvious positive correlation with duty cycle and initial state of charge. The current of the heating cycle is the key factor for the temperature rise. Therefore, the accurate control of the current is the basis of the low temperature heating. The electrochemical thermal coupling model of heating at low temperature is established, and the lithium-ion concentration distribution of the particles during the heating process is analyzed. The results show that the extremely fast heating method adopted will not affect the overall recyclable lithium-ion concentration of particles, and the effects of heating frequency and duty cycle on heating are verified.
Key wordselectric vehicles    lithium-ion battery    low temperature heating    extremely fast heating    safety    electrochemical thermal coupling model
收稿日期: 2020-10-09      出版日期: 2021-03-15
ZTFLH:  TM912  
基金资助:科技部重点研发计划(2017YFB0103802)和国家自然科学基金(51877009)资助项目。
通讯作者: 孙逢春(通信作者),男,1958年出生,博士,教授,博士研究生导师,中国工程院院士。主要研究方向为车辆电传动,车辆动力学。E-mail:sunfch@bit.edu.cn   
作者简介: 熊瑞,男,1985年出生,博士,教授,博士研究生导师,IET会士。主要研究方向为电动载运装备动力系统、电池系统、储能系统和人工智能。E-mail:rxiong@bit.edu.cn;马骕骁,男,1996年出生。主要研究方向为动力电池系统安全管理。E-mail:masuxiao@qq.com;陈泽宇,男,1982年出生,博士,东北大学副教授,北京理工大学访问学者。主要研究方向为动力电池故障诊断及安全管理。E-mail:chenzy@mail.neu.edu.cn
引用本文:   
熊瑞, 马骕骁, 陈泽宇, 孙逢春. 锂离子电池极速自加热中的电-热耦合特性及建模[J]. 机械工程学报, 2021, 57(2): 179-189.
XIONG Rui, MA Suxiao, CHEN Zeyu, SUN Fengchun. Electrochemical Thermal Coupling Characteristics and Modeling for Lithium-ion Battery Operating with Extremely Self-fast Heating. Journal of Mechanical Engineering, 2021, 57(2): 179-189.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2021.02.179      或      http://qikan.cmes.org/jxgcxb/CN/Y2021/V57/I2/179
[1] 熊瑞,李幸港. 基于双卡尔曼滤波算法的动力电池内部温度估计[J]. 机械工程学报,2020,56(14):146-151. XIONG Rui,LI Xinggang. Battery internal temperature estimation method through double extended Kalman filtering algorithm[J]. Journal of Mechanical Engineering,2020,56(14):146-151.
[2] 陈泽宇,熊瑞,孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报,2019,55(24):93-104. CHEN Zeyu,XIONG Rui,SUN Fengchun. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering,2019,55(24):93-104.
[3] WU Shujie,XIONG Rui,LI Hailong,et al. The state of the art on preheating lithium-ion batteries in cold weather[J]. Journal of Energy Storage,2020,27:101059.
[4] 王发成,张俊智,王丽芳. 车载动力电池组用空气电加热装置设计[J]. 电源技术,2013,37(7):1184-1187. WANG Facheng,ZHANG Junzhi,WANG Lifang. Design of electric air-heated box for batteries in electric vehicles[J]. Chinese Journal of Power Sources,2013,37(7):1184-1187.
[5] 袁昊,王丽芳,王立业. 基于液体冷却和加热的电动汽车电池热管理系统[J]. 汽车安全与节能学报,2012,3(4):371-380. YUAN Hao,WANG Lifang,WANG Liye. Battery thermal management system with liquid cooling and heating in electric vehicles[J]. Journal of Automotive Safety and Energy,2012,3(4):371-380.
[6] 熊瑞,王侃,郭姗姗. 锂离子动力电池低温复合加热方法[J]. 机械工程学报,55(14):53-59. XIONG Rui,WANG Kan,GUO Shanshan. Hybrid preheating method for lithium-ion battery used in cold environment[J]. Journal of Mechanical Engineering,2019,55(14):53-59.
[7] 张承宁,雷治国,董玉刚. 电动汽车锂离子电池低温加热方法研究[J]. 北京理工大学学报,2012,32(9):921-925. ZHANG Chengning,LEI Zhiguo,DONG Yugang. Method for heating low-temperature lithium battery in electric vehicle[J]. Transactions of Beijing Institute of Technology,2012,32(9):921-925.
[8] WANG Chaoyang,ZHANG Guangsheng,GE Shanhai,et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature,2016,529:515-518.
[9] GUO Shanshan,XIONG Rui,WANG Kan,et al. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application[J]. Applied Energy,2018,219:256-263.
[10] RUAN Haijun,JIANG Jiuchun,SUN Bingxiang,et al. An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction[J]. Applied Energy,2019,256:113797.
[11] JAGUEMONT J,BOULON L,DUBE Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy,2016,164:99-114.
[12] 熊瑞,马骕骁,杨瑞鑫,等. 动力电池外部短路故障热-力影响与分析[J]. 机械工程学报,2019,55(2):115-125. XIONG Rui, MA Suxiao, YANG Ruixin, et al. Thermo-mechanical influence and analysis of external short circuit faults in lithium-ion battery[J]. Journal of Mechanical Engineering,2019,55(2):115-125.
[13] FULLER T,DOYLE M,NEWMAN J. Simulation and optimization of the dual lithium-ion insertion cell[J]. Journal of the Electrochemical Society 1994,141(1):1-10.
[14] DOYLE M,NEWMAN J,GOZDZ A,et al. Comparison of modeling predictions with experimental data from plastic lithium-ion cells[J]. Journal of the Electrochemical Society,1996,143(6):1890-1903.
[15] FENG Xuning,WENG Caihao,OUYANG Minggao,et al. Online internal short circuit detection for a large format lithium-ion battery[J]. Applied Energy,2016,161:168-180.
[16] 云凤玲. 高比能量锂离子动力电池热性能及电化学-热耦合行为的研究[D]. 北京:北京有色金属研究总院,2016. YUN Fengling. Study on thermal performance and electrochemical-thermal couple behavior of high specific energy lithium-ion power battery[D]. Beijing:General Research Institute for Nonferrous Metals,2016.
[17] DONG Ti,PENG Peng,JIANG Fangming. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer,2018,117:261-272.
[18] RUAN Haijun,JIANG Jiuchun,SUN Bingxiang,et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries[J]. Applied Energy,2016,177:771-782.
[19] SHANG Yunlong,ZHU Chong,FU Yuhong,et al. An integrated heater equalizer for lithium-ion batteries of electric vehicles[J]. IEEE Transactions on Industrial Electronics,2018,66(6):4398-4405.
[20] ZHANG Jianbo,GE Hao,LI Zhe,et al. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain[J]. Journal of Power Sources,2015,273:1030-1037.
[21] SHANG Yunlong,ZHU Chong,LU Gaopeng,et al. Modeling and analysis of high-frequency alternating-current heating for lithium-ion batteries under low-temperature operations[J]. Journal of Power Sources,2020,450:227435.
[22] ZHU Jiangong,SUN Zechang,WEI Xuezhe,et al. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures[J]. Journal of Power Sources,2017,367:145-157.
[1] 杨云帆, 刘志强, 高贤波, 凌亮, 王开云, 翟婉明. 电力机车车轮非圆化磨耗特征及其对轮轨动态冲击作用影响分析[J]. 机械工程学报, 2021, 57(4): 130-139.
[2] 陈泽宇, 熊瑞, 李世杰, 张渤. 电动载运工具锂离子电池低温极速加热方法研究[J]. 机械工程学报, 2021, 57(4): 113-120.
[3] 罗天祺, 陈再刚, 蒋建政, 王家鑫, 王开云. 货物非均匀装载对高速货运动车组动力学性能的影响[J]. 机械工程学报, 2021, 57(2): 139-146.
[4] 贾计东, 张明路. 人机安全交互技术研究进展及发展趋势[J]. 机械工程学报, 2020, 56(3): 16-30.
[5] 王慧然, 王其东, 陈无畏, 赵林峰, 魏振亚, 蔡必鑫. 基于车辆行驶安全边界的换道控制[J]. 机械工程学报, 2020, 56(18): 143-153.
[6] 向兆军, 胡凤玲, 罗明华, 方崇全, 胡晓松. 基于电池组模型和聚类算法的锂离子电池组SOC不一致估计[J]. 机械工程学报, 2020, 56(18): 154-163.
[7] 段书用, 王启帆, 韩旭, 刘桂荣. 具有确保安全距离的A*路径优化方法[J]. 机械工程学报, 2020, 56(18): 205-215.
[8] 朱晓庆, 王震坡, WANG Hsin, 王聪. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118.
[9] 武和全, 旷世杰, 胡林. 老年乘员在自动驾驶车辆中的碰撞响应研究[J]. 机械工程学报, 2020, 56(12): 144-154.
[10] 李玉如, 杨冰, 谢君科, 肖守讷, 阳光武, 朱涛, 肖世德, 柳忠彬. 空气弹簧弹射冲击性能影响因素研究[J]. 机械工程学报, 2020, 56(10): 144-153.
[11] 金智林, 梁为何, 赵万忠. 汽车多增益融合线控转向传动比及防侧翻控制[J]. 机械工程学报, 2020, 56(10): 172-180.
[12] 雷静桃, 王洋, 程利亚, 胡磊, 王田苗. 基于复位路径包络误差和改进人工势力场法的复位机器人安全策略[J]. 机械工程学报, 2020, 56(1): 9-19.
[13] 寇杰, 张济民, 周和超, 王承萍. 机械差速器耦合轮对轨道车辆导向性能分析[J]. 机械工程学报, 2019, 55(8): 128-135.
[14] 张骞, 孟宪洪, 凌烈鹏, 高芒芒, 于梦阁. 重载铁路大跨度钢桁梁桥复合材料轨枕适应性[J]. 机械工程学报, 2019, 55(8): 145-153.
[15] 张俊, 葛世荣, 王大刚, 张德坤. 基于微动磨损预测矿井提升钢丝绳安全系数[J]. 机械工程学报, 2019, 55(7): 110-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0