Please wait a minute...

机械工程学报  2020, Vol. 56 Issue (14): 207-215    DOI: 10.3901/JME.2020.14.207
  交叉与前沿 本期目录 | 过刊浏览 | 高级检索 |
基于FLOW-3D的10 μm微孔滤膜堵塞机理数值模拟
卢继霞1, 卢文豪1, 赵子赫2, 赵修琪1, 王珊1
1. 中国矿业大学(北京)机电学院 北京 100083;
2. 国家知识产权局专利局专利审查协作江苏中心 苏州 215000
Simulation on the Fouling Mechanism of Micro-pore Filter Membrane in Size of 10 μm with FLOW-3D
LU Jixia1, LU Wenhao1, ZHAO Zihe2, ZHAO Xiuqi1, WANG Shan1
1. School of Mechanical, Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083;
2. Patent Examination Cooperation Jiangsu Center of the Patent Office, Suzhou 215000
全文: PDF(2878 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目前对微孔滤膜堵塞机理的研究主要是基于对滤膜堵塞试验数据分析所得的堵塞指数,而从虚拟仿真角度使滤膜堵塞过程可视化则有利于人们对滤膜堵塞机理的深刻认识。以10 μm微孔滤膜为分析对象,基于FLOW-3D对膜孔尺寸附近的颗粒相对于微孔滤膜的摆放位置及倾斜角度与膜孔堵塞的关系,以及颗粒与膜孔间的架桥截留等进行了仿真分析。研究结果表明,短径大于膜孔尺寸的颗粒一定会被膜孔截留,短径小于膜孔尺寸的颗粒通常情况下均会通过膜孔,除非该颗粒恰好位于膜孔上方、短径与膜孔尺寸相近且长径与膜孔平行。堵孔后的颗粒表面会承受较大的液体压力。小颗粒与大颗粒的组合会形成稳定的架桥,架桥是长短径均小于膜孔尺寸颗粒的主要沉积形式。呈一定尺寸分布的颗粒在通过滤膜微孔时,大颗粒拦截首先发生,然后才是小颗粒之间的架桥,这两个机理联合作用导致膜孔堵塞。实际污染样液对滤膜微孔的堵塞结果验证了仿真分析的正确性。仿真结果可为基于滤膜堵塞法的油液污染颗粒定量检测模型研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢继霞
卢文豪
赵子赫
赵修琪
王珊
关键词 油液污染堵塞机理微孔滤膜数值模拟    
Abstract:The mechanism of membrane pore fouling has mainly been determined by fouling index which is obtained by analyzing the filtrate flux data based on the filter classical fouling models so far. However, it is better to understand the filter fouling mechanism by visualizing the membrane plugging process with a simulation model. Taken a 10 μm micro-pore filter membrane as an example, the relationship between membrane fouling and the position and the inclination angle of particles with size close to membrane pore size relative to filter membrane are studied by using FLOW-3D software. Furthermore, the principles of the bridge interception of the particles by the membrane pores are also discussed. The results show that a single particle can be intercepted when its short diameter is larger than the pore size. Usually, a particle whose short diameter is smaller than the pore size will pass through the membrane only when it is located just above the membrane pore and its short diameter is close to the pore size, and meanwhile the direction of its long diameter is parallel to the membrane pore. The surface of a particle trapped in a pore suffers from a big dragging force. The combination of small particles and large particles can cause a stable bridge. Bridging interception is the main way for the deposition of particles that both the long and short diameters are smaller than the membrane pore size. When the particles with a certain size distribution pass through the microporous membrane, the interception of large particles occurs first, and then the bridging between small particles, and the combination of these two mechanisms leads to membrane pore plugging. The simulation model are validated through plugging test of actual polluted oil sample on micro-pore filter membrane. The simulation results can provide a reference for studying the quantitative detection model of contaminated oil samples based on filter fouling.
Key wordsoil contamination    fouling mechanism    micro-pore filter membrane    numerical simulation
收稿日期: 2019-08-04      出版日期: 2020-08-12
ZTFLH:  TH137  
基金资助:国家重点计划专项(2016YFC0600900)和国家自然科学基金(51375481)资助项目。
作者简介: 卢继霞,女,1971年出生,博士,副教授。主要研究方向为液压系统污染控制。E-mail:lujx1971@126.com
引用本文:   
卢继霞, 卢文豪, 赵子赫, 赵修琪, 王珊. 基于FLOW-3D的10 μm微孔滤膜堵塞机理数值模拟[J]. 机械工程学报, 2020, 56(14): 207-215.
LU Jixia, LU Wenhao, ZHAO Zihe, ZHAO Xiuqi, WANG Shan. Simulation on the Fouling Mechanism of Micro-pore Filter Membrane in Size of 10 μm with FLOW-3D. Journal of Mechanical Engineering, 2020, 56(14): 207-215.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2020.14.207      或      http://qikan.cmes.org/jxgcxb/CN/Y2020/V56/I14/207
[1] 宋单阳, 宋建成, 田慕琴, 等. 煤矿综采工作面液压支架电液控制技术的发展及应用[J]. 太原理工大学学报, 2018, 49(2):240-251. SONG Danyang, SONG Jiancheng, TIAN Muqin, et al. Development and application of electro-hydraulic control technology for hydraulic support in coal mine[J]. Journal of Taiyuan University of Technology, 2018, 49(2):240-251.
[2] International Organization for Standardization. Hydraulic fluid power:Monitoring the level of particulate conta-mination of the fluid-Part 3:Use of the filter blockage technique[S/OL].[2008-04-16]. http://www.spc.org.cn.
[3] 卢继霞, 夏连海, 丁思变, 等. 污染度检测传感器分类及检测特点分析[J]. 润滑与密封, 2011, 36(7):99-102. LU Jixia, XIA Lianhai, DING Sibian, et al. Classification of contamination level testing sensors and their testing characteristics[J]. Lubrication Engineering, 2011, 36(7):99-102.
[4] 卢继霞, 丁慧, 方亮, 等. 化学镀镍方法制备金属微孔滤膜[J]. 机械工程学报, 2014, 50(12):171-176. LU Jixia, DING Hui, FANG Liang, et al. Method to make metal micro-pore filter membrane through electro less nickel-plating[J]. Journal of Mechanical Engineering, 2014, 50(12):171-176.
[5] LU Jixa, JIA Ruiqing. A new model to determine the particle size distribution of solid contaminants in a fluid based on micro-sieve silting principle[J]. Powder Tech-nology, 2016, 294:403-410.
[6] HERMIA J. Constant pressure blocking filtration laws:Application to power-law non-Newtonian fluids[J]. Trans. Inst. Chem., 1982, 60:183-187.
[7] KAWAKATSU T, NAKAO S, KIMURA S. Effects of size and compressibility of suspended particles and surface pore size of membrane on flux in crossflow filtra-tion[J]. J. Membrane Sci., 1993, 81:173.
[8] WANG F, VOLODYMYR V T. Pore blocking mechanisms during early stages of membrane fouling by colloids[J]. Journal of Colloid and Interface Science, 2008, 328:464-469.
[9] HWANG K, LIAO C Y. Effects of membrane morphology and operating conditions on microfiltration particle fouling[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43:46-52.
[10] WARKIANI M E, WICAKSANA F, FANE A G, et al. Investigation of membrane fouling at the microscale using isopore filters[J]. Microfluidics and Nanofluidics, 2015, 19(2):307-315.
[11] 郭宽良. 高等传热和流动问题的数值计算[M]. 南京:江苏大学出版社, 2012. GUO Kuanliang. Advanced numerical heat transfer and fluid flow[M]. Nanjing:Jiangsu University Press, 2012.
[12] 胡坤, 李振北. ANSYS ICEM CFD工程实例详解[M].北京:人民邮电出版社, 2014. HU Kun, LI Zhenbei. Detailed explanation of ANSYS ICEM CFD engineering examples[M]. Beijing:The People's Posts and Telecommunications Press, 2014.
[13] 钱付平, 王海刚. 随机排列纤维过滤器颗粒捕集特性的数值研究[J]. 土木建筑与环境工程, 2010, 32(6):120-126. QIAN Fuping, WANG Haigang. Numerical analysis on particle capture characteristics of fibrous filters with random structure[J]. Journal of Civil, Architectural & Environmental Engineering, 2010, 32(6):120-126.
[14] 付海明, 徐芳芳, 李艳艳. 纤维过滤介质渗透率及压力损失数值模拟[J]. 华侨大学学报, 2012, 33(5):535-542. FU Haiming, XU Fangfang, LI Yanyan. Numerical simulation on permeability and pressure drop of fibrous filtration media[J]. Journal of Huaqiao University, 2012, 33(5):535-542.
[15] 王亮, 付海明, 朱辉, 等. 基于DPM法单纤维捕集效率的CFD模拟[J]. 建筑热能通风空调, 2015, 34(1):49-51, 48. WANG Liang, FU Haiming, ZHU Hui, et al. Simulation of collection efficiency on single fiber surface based on DPM[J]. Building Energy & Environment, 2015, 34(1):49-51, 48.
[16] GROENEVELD J, TEKLEMARIAM E. Hydraulic applications of Flow-3D proceedings[J]. Annual Conference:Canadian Society for Civil Engineering, 1999, 2:69-78.
[17] 王新民, 张得明, 张钦礼, 等. 基于FLOW-3D软件的深井膏体管道自流输送性能[J]. 中南大学学报, 2011, 42(7):2102-2108. WANG Xinmin, ZHANG Deming, ZHANG Qinli, et al. Pipeline self-flowing transportation property of paste based on FLOW-3D software in deep mine[J]. Journal of Central South University, 2011, 42(7):2102-2108.
[18] COSTELLO M, SAHU J. Using computational fluid dynamics-rigid body dynamic (CFD-RBD) results to generate aerodynamic models for projectile flight simula-tion[J]. Proceedings of the Institution of Mechanical Engineers (Part G):Journal of Aerospace Engineering, 2007, 222(7):1067-1079.
[19] COSTELLO M, GATTO S, SAHUAIAA J. Using CFD/RBD results to generate aerodynamic models for projectile flight simulation[J]. Atmospheric Flight Me-chanics Conference & Exhibit, 2013, 157(6):906-906.
[20] CHO JN, SONG H, HWANG KN, et al. Experiment assessment of suspended sediment concentration changed by solitary wave[J]. Journal of Marine Science & Technology, 2017, 25(6):649-655.
[1] 朱东彬, 吴民强, 王竹贤, 杨伟东. 基于微滴喷射3D打印的纳米颗粒悬浮墨水稳定喷射研究[J]. 机械工程学报, 2020, 56(9): 243-251.
[2] 赵长财, 袁荣娟, 郝海滨, 胡丽梅, 贾向东. 高压气瓶辊模拉拔力的理论计算与数值模拟[J]. 机械工程学报, 2020, 56(4): 49-56.
[3] 陈翔, 陈伟, 禄盛, 金晓清, 马文生, 赵洋. NiTiNb记忆合金热力学性能的试验及其唯象本构模型[J]. 机械工程学报, 2020, 56(4): 65-75.
[4] 史俊杰, 许昌, 雷娇, 李林敏, 薛飞飞, 韩星星. 典型山丘地形与风力机诱导涡流耦合演变规律[J]. 机械工程学报, 2020, 56(4): 85-94.
[5] 雷政, 王启明, 甘恒谦, 朱明, 姜鹏. FAST液压促动器过滤系统[J]. 机械工程学报, 2020, 56(4): 218-223.
[6] 董星, 刘雨庆, 段雄. 前混合水射流多弹丸喷丸模型及残余应力场的数值模拟[J]. 机械工程学报, 2020, 56(4): 224-232.
[7] 李渊博, 杨涛, 郑韶先, 赵锡龙. 超窄间隙焊接过程绝缘固壁约束片状偏钨极电弧特性的数值模拟[J]. 机械工程学报, 2020, 56(2): 69-76,85.
[8] 邓云飞, 张永, 曾宪智, 杨永刚. 6061-T651铝合金动态力学性能及断裂准则修正[J]. 机械工程学报, 2020, 56(18): 81-91.
[9] 柏宇星, 孔繁余, 赵飞, 徐振法. 新型矿用高速抢险泵的设计与性能分析[J]. 机械工程学报, 2020, 56(18): 244-253.
[10] 肖渊, 张威, 王盼, 李红英. 直接驱动型压电式喷头微滴产生过程数值模拟及试验研究[J]. 机械工程学报, 2020, 56(17): 233-239.
[11] 毛镇东, 阚盈, 姜云禄, 韩晓辉, 陈怀宁. 异种铝合金电阻点焊接头全场残余应力研究[J]. 机械工程学报, 2020, 56(16): 84-90.
[12] 蔡路, 张继业, 李田. 双层客车通风模拟与送风均匀性优化[J]. 机械工程学报, 2020, 56(14): 129-137.
[13] 马来好, 张洪朋, 徐志伟, 乔卫亮, 陈海泉. 对置螺线管线圈的多功能检测模型及灵敏度研究[J]. 机械工程学报, 2020, 56(13): 60-66.
[14] 林兴华, 武建国, 王晓鸣, 张敏革, 刘海涛. 基于侧线感知机理对水下三角形干扰源感知方法的研究[J]. 机械工程学报, 2020, 56(12): 240-248.
[15] 刘少军, 李渊文, 胡小舟. 基于DEM-CFD颗粒体积分数对深海扬矿电泵工作性能的影响[J]. 机械工程学报, 2020, 56(10): 257-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0