Please wait a minute...

机械工程学报  2020, Vol. 56 Issue (13): 60-66    DOI: 10.3901/JME.2020.13.060
  特邀专栏:微纳能源与传感 本期目录 | 过刊浏览 | 高级检索 |
对置螺线管线圈的多功能检测模型及灵敏度研究
马来好, 张洪朋, 徐志伟, 乔卫亮, 陈海泉
大连海事大学轮机工程学院 大连 116026
Research on Multi-functional Detection Model and Sensitivity of Opposed Solenoid Coil
MA Laihao, ZHANG Hongpeng, XU Zhiwei, QIAO Weiliang, CHEN Haiquan
Marine Engineering College, Dalian Maritime University, Dalian 116026
全文: PDF(21374 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为丰富螺线管型传感器对液压油污染物的检测内容,提出并制作一种基于微流体芯片的对置螺线管型多功能检测传感器。理论推导了对置螺线管线圈的金属颗粒电感检测模型和非金属颗粒电容检测模型。为进一步提高检测灵敏度,试验对比分析了硅钢片对对置螺线管线圈的电感检测和电容检测的灵敏度。试验结果表明,硅钢片能够显著提升对置螺线管线圈的金属颗粒检测灵敏度,60~70 μm铁颗粒和160~170 μm铜颗粒的检测信噪比分别提升127.44%、222.07%,也能提高对置螺线管线圈的非金属颗粒检测灵敏度,但不显著,140~150 μm水滴和240~250 μm气泡的检测信噪比分别提升21.92%、7.95%。该研究对提高螺线管型传感器的液压油污染物检测能力提供了技术支撑,对液压系统健康状态监测以及故障诊断具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马来好
张洪朋
徐志伟
乔卫亮
陈海泉
关键词 对置螺线管线圈微流体传感器油液污染物    
Abstract:In order to enrich the detection content of the solenoid sensor for hydraulic oil contaminants, a multi-function detection sensor based on microfluidic chip is proposed and fabricated. The inductance detection model of metal particles and capacitance detection model of non-metal particles are constructed theoretically for the opposed solenoid coil. In order to further improve the detection sensitivity, the effect of silicon steel sheet on the sensitivity of inductance detection and capacitance detection is tested. The experimental results show that the silicon steel sheet can significantly improve the detection sensitivity of the metal particles of the opposing solenoid coil. The SNR of detecting 60-70 μm iron particles and 160-170 μm copper particles is increased by 127.44% and 222.07%, respectively. The detection sensitivity of the non-metallic particles of opposite solenoid coil is not significant, and the SNR of detecting the 140-150 μm water droplet and the 240-250 μm bubble is increased by 21.92% and 7.95%, respectively. This research is expected to provide support for improving the detection capability of the hydraulic oil contaminant of the solenoid sensor, which is of great significance for the monitoring of the health status of the hydraulic system and fault diagnosis.
Key wordsopposite solenoid coil    microfluidics    sensor    oil contaminant
收稿日期: 2019-08-01      出版日期: 2020-08-01
ZTFLH:  TP212  
  TH73  
基金资助:国家自然科学基金(51679022)、中央高校基本科研业务费专项资金(132019368)、大连海事大学“双一流”建设专项(“创新项目”)(BSCXXM05)资助项目。
通讯作者: 张洪朋(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向为船舶机电一体化、船舶液压系统与微流体芯片检测技术。E-mail:zhppeter@163.com   
作者简介: 马来好,男,1989年出生,博士研究生。主要研究方向为船舶机电一体化和微流体检测技术。E-mail:dmu6hao@163.com
引用本文:   
马来好, 张洪朋, 徐志伟, 乔卫亮, 陈海泉. 对置螺线管线圈的多功能检测模型及灵敏度研究[J]. 机械工程学报, 2020, 56(13): 60-66.
MA Laihao, ZHANG Hongpeng, XU Zhiwei, QIAO Weiliang, CHEN Haiquan. Research on Multi-functional Detection Model and Sensitivity of Opposed Solenoid Coil. Journal of Mechanical Engineering, 2020, 56(13): 60-66.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2020.13.060      或      http://qikan.cmes.org/jxgcxb/CN/Y2020/V56/I13/60
[1] 史皓天,张洪朋,顾长智,等. 液压油污染物多参数检测传感器[J]. 仪器仪表学报,2018,39(11):172-179. SHI Haotian,ZHANG Hongpeng,GU Changzhi,et al. Multi-parameter sensor for hydraulic oil pollutant[J]. Chinese Journal of Scientific Instrument,2018,39(11):172-179.
[2] ZHU X,ZHONG C,ZHE J. Lubricating oil conditioning sensors for online machine health monitoring-A review[J]. Tribology International,2017,109:473-484.
[3] 张洪朋,张兴明,郭力,等. 微流体油液检测芯片设计[J]. 仪器仪表学报,2013,34(4):762-767. ZHANG Hongpeng,ZHANG Xingming,GUO Li,et al. Design of the oil detection microfluidic chip[J].Chinese Journal of Scientific Instrument,2013,34(4):762-767.
[4] 张洪朋,白晨朝,孙广涛,等. 高通量微型多参数油液污染物检测传感器[J]. 光学精密工程,2018,26(09):110-118. ZHANG Hongpeng,BAI Chenzhao,SUN Guangtao,et al. High-throughput miniature multi-parameter oil contamination detection sensor[J]. Optics and Precision Engineering,2018,26(9):2237-2244.
[5] HAN Zhibin,WANG Yishou,QING Xinlin. Characteristics study of in-situ capacitive sensor for monitoring lubrication oil debris[J]. Sensors,2017,17(12):2851-2864.
[6] 王强,张洪朋,张剑锋,等. 用于微流体油液检测芯片的电阻检测法[C]//2015年光学精密工程论坛,长春. 2015,23(10):96-102. WANG Qiang,ZHANG Hongpeng,ZHANG Jianfeng,et al. Resistance detection method for microfluidic oil detection chip[C]//Optical Precision Engineering Forum 2015. Changchun,2015,23(10):96-102.
[7] CHAO X U,ZHANG P L,REN G Q,et al. Output characteristic of a novel online ultrasonic wear debris sensor[J]. Tribology,2015,35(1):90-95.
[8] 曾霖,张洪朋,滕怀波,等. 一种船机油液多污染物检测新方法研究[J]. 机械工程学报,2018,54(12):125-132. ZENG L,ZHANG Hongpeng,TENG Huaibo,et al. Novel method for the detection of multi-contaminants in marine lubricants[J]. Journal of Mechanical Engineering,2018,54(12):125-132.
[9] 刘恩辰,张洪朋,曾霖,等. 高精度液压油微小颗粒检测系统[C]//2015年光学精密工程论坛,长春. 2015,23(10):396-402. LIU En-chen,ZHANG Hong-peng,ZENG Lin,et al. Detection system of small particles in hydraulic oil[C]//Optical Precision Engineering Forum 2015. Changchun,2015,23(10):396-402.
[10] ZENG L,YU Z,ZHANG H,et al. A high sensitive multi-parameter micro sensor for the detection of multi-contamination in hydraulic oil[J]. Sensors and Actuators A:Physical,2018,282:197-205.
[11] ZUBAIR M,TANG T. A high resolution capacitive sensing system for the measurement of water content in crude oil[J]. Sensors,2014,14(7):11351-11361.
[12] MUTHUVEL P,GEORGE B,RAMADASS G A. Magnetic-capacitive wear debris sensor plug for condition monitoring of hydraulic systems[J]. IEEE Sensors Journal,2018:1-10.
[13] 严宏志,张亦军. 一种磨粒在线监测传感器的设计及其特性分析[J]. 传感技术学报,2002(4):333-338. YAN Hongzhi,ZHANG Yijun. The design of an on-line monitoring sensor of wear mental partials and the analysis of its characteristic[J]. Journal of Translocation Technology, 2002(4):333-338.
[14] 范红波,张英堂,李志宁,等. 电感式磨粒传感器中铁磁质磨粒的磁特性研究[J]. 摩擦学学报,2009,29(5):452-457. FAN Hongbo,ZHANG Yingtang,LI Zhining,et al. Study on magnetic characteristic of ferromagnetic wear debris in inductive wear debris sensor[J]. Tribology,2009,29(5):452-457.
[15] 刘恩辰,张洪朋,张鑫睿,等. 双线式螺线管型磨粒传感器设计及其试验研究[J]. 大连海事大学学报,2016,42(2):102-106,116 LIU Enchen,ZHANG Hongpeng,ZHANG Xinrui,et al. Dual-coil solenoid sensor design and its experimental study for wear particles detection[J]. Journal of Dalian Maritime University,2016,42(2):102-106,116.
[16] 张兴明,张洪朋,孙玉清,等. 微流体芯片对油液金属颗粒的区分检测[J]. 大连海事大学学报,2014,40(3):103-107. ZHANG Xingming,ZHANG Hongpeng,SUN Yuqing,et al. Distinction detection for metal particles in oil by using microfluidic chip[J]. Journal of Dalian Maritime University,2014,40(3):103-107.
[17] ZHANG X M,ZHANG H P,BO Z,et al. Study on magnetization and detection the metal particle in harmonic magnetic field[J]. Key Engineering Materials,2015,645-646:790-795.
[18] 曾霖,张洪朋,赵旭鹏,等. 液压油污染物双线圈多参数阻抗检测传感器[J]. 仪器仪表学报,2017,38(7):1690-1697. ZENG Lin,ZHANG Hongpeng,ZHAO Xupeng,et al. Double coil multi-parameter impedance sensor for hydraulic oil pollutants detection[J]. Chinese Journal of Scientific Instrument,2017,38(7):1690-1697.
[19] 雷银照. 时谐电磁场解析方法[M]. 北京:科学出版社,2000. LEI Yinzhao. Analytical method of time harmonic electromagnetic field[M]. Beijing:Science Press,2000.
[20] HU X,YANG W. Planar capacitive sensors:Designs and applications[J]. Sensor Review,2010,30(1):24-39.
[21] ZHANG H,ZENG L,TENG H,et al. A novel on-chip impedance sensor for the detection of particle contamination in hydraulic oil[J]. Micromachines,2017,8(8):249.
[22] 张兴明,张洪朋,陈海泉,等. 微流体油液检测芯片分辨率-频率特性研究[J]. 仪器仪表学报,2014,35(2):427-433. ZHANG Xingming,ZHANG Hongpeng,CHEN Haiquan,et al. Study on the resolution-frequency characteristic of microfluidic oil detection chip[J]. Chinese Journal of Scientific Instrument,2014,35(2):427-433.
[1] 史皓天, 张洪朋, 顾长智, 马来好, 李国宾. 电感-电容双模式液压油污染物检测传感器[J]. 机械工程学报, 2020, 56(2): 20-26.
[2] 张钊, 常洪龙. 模态局部化传感器研究进展[J]. 机械工程学报, 2020, 56(13): 32-40.
[3] 路阔, 李青松, 周鑫, 李兰, 吴宇列, 吴学忠, 肖定邦. 基于光阱力的新型传感技术[J]. 机械工程学报, 2020, 56(13): 16-31.
[4] 高扬, 穆继亮, 何剑, 陈鸿, 穆锦标, 安站东, 赵新平, 丑修建. 煤机设备无线自供电状态监测系统[J]. 机械工程学报, 2020, 56(13): 41-49.
[5] 戴荣, 于海涛, 王权. 基于Duffing系统的谐振式微悬臂梁传感器微弱谐振信号检测[J]. 机械工程学报, 2020, 56(13): 50-59.
[6] 左盟, 陈伟球, 杨明, 鲍荣浩. Y形横梁六维力/力矩传感器的应变分析[J]. 机械工程学报, 2020, 56(12): 1-8.
[7] 张盼, 闫柯, 朱永生, 洪军, 梁潘婷. 面向旋转部件监测的耐高温量子点传感器研究[J]. 机械工程学报, 2020, 56(10): 12-18,26.
[8] 唐辉, 殷德军, 张楠, 张金龙. 轮毂电机无位置传感器控制注入高频信号非线性分析与补偿[J]. 机械工程学报, 2019, 55(22): 52-59.
[9] 栾新, 乜云利, 李坤乾, 姜迁里, 周丽芹. 6 km自容式湍流观测剖面仪设计与试验研究[J]. 机械工程学报, 2019, 55(20): 231-239.
[10] 姚建涛, 张弘, 勾栓栓, 向喜梅, 许允斗, 赵永生. 基于微孔抽丝成型工艺的软体力/位传感器[J]. 机械工程学报, 2019, 55(2): 33-41.
[11] 林启敬, 伍子荣, 赵娜, 田边, 蒋庄德. 用于航空发动机的光纤F-P温度传感器及其信号解调系统研究[J]. 机械工程学报, 2019, 55(18): 1-7.
[12] 郭亮, 张华. 狭小空间不连续折线焊缝识别移动机器人跟踪系统[J]. 机械工程学报, 2019, 55(17): 8-13.
[13] 谢有浩, 赵林峰, 陈无畏, 刘彦琳. 低附着路面条件的线控转向系统路感模拟与回正控制研究[J]. 机械工程学报, 2019, 55(16): 148-158.
[14] 肖鑫, 汤宝平, 邓蕾, 黄艺. 机械振动无线传感器网络跨层同步采集累积误差控制方法[J]. 机械工程学报, 2019, 55(15): 202-207.
[15] 周畅祎, 胡海峰, 杨拥民, 官凤娇, 徐海龙. 无参考传感器叶端定时叶片同步振动参数辨识方法研究[J]. 机械工程学报, 2019, 55(13): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0