Please wait a minute...

机械工程学报  2018, Vol. 54 Issue (10): 195-201    DOI: 10.3901/JME.2018.10.195
  交叉与前沿 本期目录 | 过刊浏览 | 高级检索 |
油液内气泡半径和含气量模型研究
周俊杰, 苑士华, 荆崇波, 李雪原
北京理工大学车辆传动国防科技重点实验室 北京 100081
Research on the Model of Bubble Radius and Gas Content in Hydraulic Oils
ZHOU Junjie, YUAN Shihua, JING Chongbo, LI Xueyuan
National Key Laboratory of Vehicular Transmission, Beijing Institute of Technology, Beijing 100081
全文: PDF(327 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对液压油液内空气析出现象,研究压力变化时气泡尺寸和含气量变化规律。在分析气泡界面受力基础上,推导气泡半径和油液含气量的解析模型,通过与数值计算结果对比验证解析公式具有较高精度,理论分析气体随压力升高而发生的溶解和扩散现象对气泡半径和含气量的影响。搭建气泡尺寸测试试验台验证解析模型可准确计算气泡半径。对初始半径为0.095 mm和2.9 mm的两个气泡跟踪测量结果表明气泡溶解和扩散导致气泡半径缩小加快,其影响程度决定于气体在油液的溶解度;对不同含气率的油液测量表明气泡分布呈现对数正态分布特点,经数据拟合气泡半径分布函数可由统一公式表示。最后,根据含气量模型推导其变化率的表达式,研究表明油液压力及其导数是影响含气量变化的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:In view of the air release issue in hydraulic oils, the variation of bubble size and gas content in terms of pressure is studied. Based on the stress balance on the bubble interface, an analytical model of bubble radius and gas content are derived, and from the comparison to numerical results the formula is verified with a high precision. The model takes the influence of gas dissolution and diffusion on bubble radius and gas content into account. The analytical model is validated by the experimental test rig. Measurement of the bubbles with the initial radius of 0.095 mm and 2.9 mm show that gas diffusion makes the bubble shrink more quickly, and the influence is determined by the gas solubility in oil. The bubble distribution is found to conform to the logarithmic normal distribution, and a uniform equation is fitted to match for different cases. At last, the analytical expression of the change rate of gas content is derived according to the proposed model. Results show that the oil pressure and its derivative are the main factors affecting the change of gas content.
收稿日期: 2017-06-18     
:  TH137  
基金资助:国家自然科学基金(51505030)和流体动力与机电系统国家重点实验室开放基金(GZKF-201718)资助项目。
通讯作者: 周俊杰(通信作者),男,1986年出生,博士,助理教授。主要研究方向为流体传动与控制。E-mail:121zhouxiao@163.com   
引用本文:   
周俊杰, 苑士华, 荆崇波, 李雪原. 油液内气泡半径和含气量模型研究[J]. 机械工程学报, 2018, 54(10): 195-201.
ZHOU Junjie, YUAN Shihua, JING Chongbo, LI Xueyuan. Research on the Model of Bubble Radius and Gas Content in Hydraulic Oils. Journal of Mechanical Engineering, 2018, 54(10): 195-201.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2018.10.195      或      http://qikan.cmes.org/jxgcxb/CN/Y2018/V54/I10/195
[1] CASOLI P,VACCA A,FRANZONI G,et al. Modelling of fluid properties in hydraulic positive displacement machines[J]. Simulation Modelling Practice & Theory,2006,14(8):1059-1072.
[2] 王静,龚国芳,杨华勇. 油液体积模量的研究与在线测量[J]. 机械工程学报,2009,45(7):120-125. WANG Jing,GONG Guofang,YANG Huayong. Research and online measurement of bulk modulus of hydraulic oil[J]. Journal of Mechanical Engineering,2009,45(7):120-125.
[3] BRENNEN C E. Cavitation and bubble dynamics[M]. Oxford:Oxford University Press,1995.
[4] WARD B,EMMONY D C. Direct observation of the pressure developed in a liquid during cavitation-bubble collapse[J]. Applied Physics Letters,1991,59(18):2228-2230.
[5] ZHOU J,VACCA A,MANHARTSGRUBER B. A novel approach for the prediction of dynamic features of air release and absorption in hydraulic oils[J]. Journal of Fluids Engineering,2013,135(9):1790-1791.
[6] SINGHAL A K,ATHAVALE M M,Li H,et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering,2002,124(3):617-624.
[7] ZWART P J,GERBER A G,BELAMRI T.A two-phase flow model for predicting cavitation dynamics[C/CD]//Proceedings of the Fifth International Conference on Multiphase Flow,Yokohama,Japan,2004.
[8] GHOLIZADEH H,BURTON R,SCHOENAU G. Fluid bulk modulus:comparison of low pressure models[J]. International Journal of Fluid Power,2012,13(1):7-16.
[9] MANHARTSGRUBER B. Experimental results on air release and absorption in hydraulic oil[C]//Proceedings of the ASME/BATH Symposium on Fluid Power & Motion Control,July 7-11, 2013,Incline Village, Nevada:ASME 2013 Fluids Engineering Division Summer Meeting 2013.
[10] SCHRANK K,MURRENHOFF H,STAMMEN C. Measurements of air absorption and air release characteristics in hydraulic oils at low pressure[C]//ASME/BATH 2013 Symposium on Fluid Power and Motion Control,2013:V001T01A030.
[11] ZHOU J,WEI C,Yuan S. An analytical model of gas content in fluids considering the distribution of bubble radius[J]. Lubrication Science,2017, 29:227-239.
[1] 姚静, 蒋东廷, 张伟, 董兆胜. 开式泵控非对称缸系统一阶轨迹灵敏度分析[J]. 机械工程学报, 2019, 55(2): 223-232.
[2] 闵为, 王东, 郑直, 欧培伟, 冀宏. 低压下锥阀振荡空化的可视化试验研究[J]. 机械工程学报, 2018, 54(20): 139-144.
[3] 吕飞, 徐兵, 张军辉. 转速对EHA泵柱塞副柱塞位姿及泄漏量影响仿真分析[J]. 机械工程学报, 2018, 54(20): 123-130.
[4] 李泽鹏, 权龙, 葛磊, 夏连鹏, 郝云晓. 液电混合驱动液压挖掘机动臂特性及能效研究[J]. 机械工程学报, 2018, 54(20): 213-219.
[5] 党堃原, 杨丽曼, 李运华, 司国雷, 陈君辉, 王文杰, 刘宇辉, 权龙, 赵斌. 基于气隙组合永磁弹簧的直动式溢流阀优化设计[J]. 机械工程学报, 2018, 54(20): 297-303.
[6] 曹晓明, 郭宝峰, 王佩, 姚静. D+A组合控制多泵源液压系统泵阀复合控制研究[J]. 机械工程学报, 2018, 54(20): 304-311.
[7] 俞滨, 巴凯先, 王东坤, 刘雅梁, 李文锋, 孔祥东. 液压驱动单元位置控制系统前馈补偿控制研究[J]. 机械工程学报, 2018, 54(20): 159-169.
[8] 施虎, 何彬, 汪政, 梅雪松. 磁控形状记忆合金驱动特性及其在液压阀驱动器中的应用分析[J]. 机械工程学报, 2018, 54(20): 235-244.
[9] 张啟晖, 熊伟, 阮健, 关广丰, 熊庆辉, 王祖温. 车辆换档用2D数字缓冲阀的研究[J]. 机械工程学报, 2018, 54(20): 206-212.
[10] 王灏, 黄家海, 权龙, 王鹤. 基于双线性插值控制策略的比例流量阀特性研究[J]. 机械工程学报, 2018, 54(20): 287-296.
[11] 夏连鹏, 权龙, 杨敬, 赵斌. 液压挖掘机动臂自重液-气储能平衡方法研究[J]. 机械工程学报, 2018, 54(20): 197-205.
[12] 朱碧海, 钱鹏程, 姬增起. 双斜盘阀配流轴向柱塞式液压电机泵配流特性和变量原理的研究[J]. 机械工程学报, 2018, 54(20): 220-234.
[13] 刘银水, 吴德发, 李东林, 邓亦攀. 深海液压技术应用与研究进展[J]. 机械工程学报, 2018, 54(20): 14-23.
[14] 权龙, 夏连鹏, 赵斌, 葛磊. 液压驱动机械臂势能回收利用研究工作进展[J]. 机械工程学报, 2018, 54(20): 4-13.
[15] 施虎, 汪政, 何彬, 梅雪松, 贾坤. 液压式人体行走能量回收装置设计与回收效果分析[J]. 机械工程学报, 2018, 54(20): 170-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0