|
|
Effect of Rapid Spheroidizing Annealing on Microstructure and Hardness of SKS51 Die Steel |
FENG Juning1, TAN Fengliang2, LI Hongjuan1, ZENG Bing3, WANG Li1, YE Qinzheng4 |
1. College of Mechanical and Electrical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China; 2. College of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China; 3. VALIN LY Steel Co., Ltd., Loudi 417000, China; 4. Guangdong Denas Metal Products Co., Ltd., Yunfu 527300, China |
|
|
Abstract The SKS51 steel was subjected to rapid spheroidizing annealing treatment (including two stages of austenitizing and isothermal spheroidizing) based on the principle of divorced eutectoid transformation. The effects of the austenitizing temperature (750, 780 ℃), austenitizing holding time (10, 20 min) and isothermal spheroidizing temperature (650, 680, 700 ℃) on the microstructure and hardness were studied. The results show that under the test conditions, by increasing the austenitizing temperature or prolonging the austenitizing holding time, the flaky carbides in the steel increased in number, the spheroidizing effect became deteriorating, and the hardness increased. After austenitizing at 750 ℃ for 10 min, with the increase of the isothermal spheroidizing temperature, the content and size of spherical carbides in the SKS51 steel increased, and the hardness decreased. After 750 ℃×10 min+700 ℃×2 h rapid spheroidizing annealing, the SKS51 steel had the largest number of spherical carbides and the lowest hardness.
|
Received: 28 July 2020
Published: 23 August 2021
|
|
|
|
|
[1] |
薛刚,余驰斌,鲍思前,等.SKS51合金工具钢的快速球化退火工艺的试验研究[J].特殊钢,2012,33(1):54-56. XUE G,YU C B,BAO S Q,et al.Test and study on fast spheroidizing annealing process for an alloy tool steel SKS51[J].Special Steel,2012,33(1):54-56.
|
[2] |
姜荃, 尹志新. 基于离异共析的轴承钢快速球化的热力学模型解析[J]. 建材发展导向, 2014(5):29-29. JIANG Q, YIN Z X. Analysis of the thermodynamic model of bearing steel rapid spheroidization based on divorced eutectoid[J]. Development Guide to Building Materials, 2014(5):29-29.
|
[3] |
VERHOEVEN J D,GIBSON E D.The divorced eutectoid transformation in steel[J].Metallurgical and Materials Transactions A,1998,29(4):1181-1189.
|
[4] |
ZHU G H,ZHENG G.Directly spheroidizing during hot deformation in GCr15 steels[J].Frontiers of Materials Science in China,2008,2(1):72-75.
|
[5] |
李峰, 刘占东, 王德宇, 等. 40Cr快速球化退火工艺研究[J]. 一重技术, 2002(4):34-35. LI F, LIU Z D, WANG D Y, et al. Research on 40Cr Fast Spheroidizing Annealing Process[J]. CFHI Technology, 2002(4):34-35.
|
[6] |
KASATKIN O G, VINOKUR B B, PILYUSHENKO V L. Calculation models for determining the critical points of steel[J]. Metal Science & Heat Treatment, 1984, 26(1):27-31.
|
[7] |
贺毅,王学前.高碳钢快速球化退火工艺的研究[J].热加工工艺,2002(1):32-34. HE Y, WANG X Q. The research of the fast spheroidizing annealing technique for high-carbon steel[J]. Hot Working Technology, 2002(1):32-34.
|
[8] |
吕英怀,张芝安,孙宝臣.中碳钢快速球化退火工艺的研究[J].东北重型机械学院学报,1994, 18(4):323-326. LV Y H, ZHANG Z A, SUN B C. Research on fast spheroidizing annealing process of medium carbon steel[J]. Journal of Northeast Heavy Machinery Institute, 1994, 18(4):323-326.
|
[9] |
汪东红, 杨霄, 陈其伟, 等. GCr15钢的快速球化退火工艺[J]. 安徽工业大学学报(自然科学版),2009, 26(3):239-242. WANG D H,YANG X,CHEN Q W,et al.Fast spheroidizing annealing for GCr15[J].Journal of Anhui University of Technology (Natural Science),2009, 26(3):239-242.
|
[10] |
金宝安, 杨霄, 朱国辉, 等. 60Si2Mn弹簧钢碳化物快速球化工艺研究[J]. 安徽工业大学学报(自然科学版), 2011, 28(1):16-18. JIN B A, YANG X, ZHU G H, et al. Study on the technique of carbide fast spheroidizing for 60Si2Mn spring steel[J]. Journal of Anhui University of Technology (Natural Science), 2011, 28(1):16-18.
|
[11] |
叶宏. 金属热处理原理与工艺[M]. 北京:化学工业出版社,2015. YE H. Principle and technology of metal heat treatment[M]. Beijing:Chemical Industry Press, 2015.
|
[1] |
WU Xiaoquan, YAO Dengcan, ZHANG Daoda, YAN Hong, HU Zhi. Microstructure and Properties of Laser Cladding WC Reinforced Ni-Based Alloy Cladding Layer on AlSi7Mg Aluminum Alloy Surface[J]. Materials For Mechanical Engineering, 2021, 45(9): 67-72. |
[2] |
LIU Yihui, LI Bao, CHEN Sijie, DING Guangzhu, LI Shihui. Effect of Postweld Heat Treatment on Microstructure and Mechanical Properties ofSIMP Steel Joint by Transient Liquid Phase Diffusion Bonding[J]. Materials For Mechanical Engineering, 2021, 45(8): 77-80,86. |
[3] |
PAN Libo, ZHOU Wenqiang, TAN Wen, WANG Junlin, ZUO Zhijiang. Microstructure and Mechanical Properties of 780 MPa Dual Phase Steels with Different Chemical Composition[J]. Materials For Mechanical Engineering, 2021, 45(8): 45-48,54. |
[4] |
ZHANG Le, XU Zhen, LI Zhi, CHEN Xuan, WU Xiaochun. Effect of Microstructure on Surface Polishing Performance ofPrehardened 718 Plastic Mold Steel[J]. Materials For Mechanical Engineering, 2021, 45(8): 49-54. |
[5] |
ZHANG Min, DU Mingke, ZHANG Yunlong, WANG Gang, ZHU Ziyue. Microstructure and Property of Dissimilar Steel Welded Joint ofQ345B Low Carbon Steel and 20Mn23Al Non-magnetic Steel[J]. Materials For Mechanical Engineering, 2021, 45(8): 66-71. |
[6] |
ZHANG Dalei, LI Yuanyuan. Effect of High Pressure Heat Treatment on Microstructure and Mechanical Properties of TC9 Titanium Alloy[J]. Materials For Mechanical Engineering, 2021, 45(8): 72-76. |
[7] |
XU Huanhuan, LIN Chen, LIU Jia, ZHANG Liang, SHEN Jingyi. Effect of CeO2 Adding Content on Microstructure and Properties of Laser Cladding WC Reinforced Nickel-Based Alloy Coating[J]. Materials For Mechanical Engineering, 2021, 45(7): 27-34. |
[8] |
HE Weiwei, CHEN Junzhou, HAO Min, DAI Shenglong. Hot Deformation Behavior and Processing Map of WE43 Magnesium Alloy[J]. Materials For Mechanical Engineering, 2021, 45(7): 69-74. |
[9] |
HAN Yuchen, XING Shilong, JIANG Chuanhai. Effect of Y2O3 Nanoparticle on Microstructure and Electrochemical CorrosionProperties of Electroplated Ni-W Coating[J]. Materials For Mechanical Engineering, 2021, 45(5): 22-26. |
[10] |
MA Changwen, DI Guobiao, WANG Kaikai, HUANG Leqing, LU Shiping. Effect of On-line Quenching on Microstructure Transition andMechanical Properties of High-Strength Steel Plate[J]. Materials For Mechanical Engineering, 2021, 45(5): 34-38. |
[11] |
SHANG Changpei, YANG Fan, XIA Zhiping. Microstructure and Mechanical Properties of WE54 Alloy after Deformation under Different Speeds[J]. Materials For Mechanical Engineering, 2021, 45(5): 56-62. |
[12] |
ZHAO Yong, SU Haijun, ZHANG Jun, LIU Lin, FU Hengzhi. Recent Progress on Directional Solidification of Nickel-BasedSuperalloys with Magnetic Field[J]. Materials For Mechanical Engineering, 2021, 45(5): 1-7,44. |
[13] |
ZHANG Weichen, LI Jiuxiao, YANG Dongye, ZHANG Xinyue, ZHENG Lixin, ZHANG Yutong, HE Linghuan. Microstructure and Mechanical Properties of in-situ Synthesized TiB+La2O3/TC4Titanium Matrix Composite by Selective Laser Melting[J]. Materials For Mechanical Engineering, 2021, 45(5): 67-70,75. |
[14] |
HUANG Yiping, LI Shaolin, LIU Hailang, JIANG Jianbo, PENG Zhiguo, TAN Yi. Effect of Applied Magnetic Field on Electron Beam Welding Formability[J]. Materials For Mechanical Engineering, 2021, 45(4): 35-39,45. |
[15] |
ZHENG Shaoxian, XU Longqiang, DU Baofeng, LI Gang. Microstructure and Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel Joint by Pulsed Ultra-Narrow-Gap Welding[J]. Materials For Mechanical Engineering, 2021, 45(4): 13-18. |
|
|
|
|