介绍了类比源设计与功能类比作用原理,从两者作用原理及发明问题求解理论(Theory of inventive problem solving,TRIZ)的相关性描述得到启发,提出基于TRIZ的类比源设计求解过程模型。首先,借助于所建立的产品功能结构模型,找出用户需求与产品各功能之间的关联性。其次,将用户需求权重值赋予相关的产品各分功能,从而得到产品功能相似度矩阵,再利用Matlab工具对该矩阵进行标准化,这有利于类比源设计与待设计问题之间相关性的定量化表示。最后,构建出一种基于TRIZ及功能类比的概念设计过程模型。以紫外光油烟净化机为例,对其功能类比源设计的功能相似度进行分析,并利用有效价值分析法对所获得的功能原理解方案进行评价,验证了所构建模型的正确性。
软体机械手(下面简称软体手)是一种由柔性材料制成的新型机械装置。凭借柔性材料天然的柔顺性和适应性,软体机械手具有了高灵活性、复杂环境适应性和安全人机交互性等特点,受到国内外学者和机构的广泛研究,并表现出良好的应用前景。综述了软体机械手的应用领域、驱动方式、材料与制造、建模与控制的相关问题,并梳理了软体机械手研究中依旧存在的问题和可能的解决方案以及软体机械手的发展趋势。软体机械手是软体机器人领域的一个重要分支,其研究涉及材料学、力学、化学、机械设计与制造、电子与控制科学以及仿生学等诸多领域的交叉和融合。对软体机械手的研究将极大丰富人们对柔性材料的复杂、丰富特性的理解,也将为更好地把柔性材料融入产品的设计提供理论和技术指导。
大型液压铲是露天矿山开采和大型工程施工广泛采用的装备,但国内所用一直依赖进口,2008年太原重工开始研发国内首台机重260 t,斗容15 m3的液压铲。上车回转是液压铲最频繁的动作,每个作业循环都要进行两次加减速,如果回转系统设计不好,就会引起液压系统严重发热,影响机器作业效能。为了缩短国内首台液压铲的研发周期,在实际系统制造之前充分了解其运行特性,分析对比开式回路和闭式回路设计方案的优劣,确定液压系统元器件的规格和参数,采用机械系统动力学仿真软件ADAMS和机电系统仿真软件AMESim联合,建立所研制液压铲整机的联合仿真模型,仿真机器实际运行工况下,两种回路方案的运行和能效特性,通过分析对比,确定采用电液比例控制的双闭式回路并联驱动上车回转,使用电液比例泵直接控制回转马达,消除系统节流损失。同时,为简化回路,利用自身配置的先导泵对闭式回路进行补油。进一步研究了上车转动惯量大范围变化对回转特性的影响,确定了加减速时间与回转角度的关系,设计出完整的电液回转系统,并应用到所研发的机器中。试车试验和现场试验测试表明,所设计的电液比例双闭式回转回路能够在转动惯量大范围变化的情况下,控制上车平稳加减速,直接回收利用回转制动动能,发热小,连续长时间作业。
针对传统集中质量法精度不高和大规模有限元模型计算量大、后处理困难的问题,在轴系单元法基础上提出一种针对行星轮系耦合振动分析建模方法。根据行星轮系结构特点,将行星轮系中各种构件分为简单轴系单元、行星架轴系单元及齿圈轴系单元等轴系模型,建立不同类型的行星轮系耦合动力学模型。研究结果表明,考虑结构柔性后,在低速阶段动态啮合力偏差与集中质量法求解结果基本相同,但随着转速增加,动态啮合力偏差与系统各阶共振频率均略有降低;而同一转速下,动态啮合力偏差随着齿圈厚度增大逐渐增加,但其变化量呈逐渐减小趋势。在所有结构中,轴的柔性化对振动影响最大,而行星架柔性对振动影响最小;各级齿轮副啮频相互耦合共同成为系统激励频率,而高速级啮频为最主要激励频率;振动能量不仅沿功率流方向传递,同样也会逆功率流方向传递。
软体机器人由软材料加工而成,自身可连续变形,与刚性机器人相比具有更高的柔顺性、安全性和适应性,在人机交互、复杂易碎品抓持和狭小空间作业等方面具有不可比拟的优势。综述软体机器人的发展历程,将软体机器人归为传统绳索驱动/气动肌肉机器人、超弹性材料软体机器人和智能材料软体机器人三大类。从仿生结构和仿生运动、驱动与加工、传感与控制三个方面对软体机器人的相关科学问题以及存在的技术难点进行总结与分析。分析了软体机器人在仿生结构、抓持作业和医疗康复等领域潜在的应用价值。对软体机器人目前的发展现状和存在的关键科学难点进行了系统的总结,并得出刚柔耦合、可变刚度和驱动传感控制一体化等研究方向可能是未来软体机器人研究新的突破点。
中高比转速水泵水轮机泵工况下近设计点驼峰严重制约了其稳定运行范围,是制约抽水蓄能电站安全与经济运行的关键问题之一。作为流动问题的宏观表现,驼峰现象必然与水泵水轮机内部的非定常流动存在密切关系。为此,基于试验和数值模拟,对水泵水轮机泵工况下可调导叶流道内的非定常流动进行研究,探究模型机泵工况下的压力脉动特性、非定流动机理及与性能曲线稳定性之间的关系。结果表明:在设计和小于设计工况下,可调导叶流道内均存在两种显著的周期性压力脉动。模型机泵工况下的流量扬程曲线在0.45~0.75倍设计流量区间内出现驼峰,频域分析清晰地揭示了以上两种压力脉动是对该驼峰存在重要影响的流动参量。
五轴数控机床空间定位精度受机床静、动态误差的综合作用,是影响工件加工质量的重要指标。综述了基于不同误差源数值特征描述的几种主流误差建模方法,分析与建模方法对应的几种误差灵敏度分析方法的特点。根据五轴数控机床的构成,分别对平动轴和转动轴的误差检测和误差辨识方法进行了综述和分析。根据动、静态误差类型的不同,总结了现有几种主要误差补偿方法的特点。最终,综合误差建模、误差灵敏度分析、误差检测和辨识以及误差补偿五个方面,系统性地分析了现有五轴数控机床空间定位精度改善方法中尚需解决的问题,探讨了五轴数控机床空间定位精度改善方法未来的发展方向。
混流泵起动过程中的振动失稳严重威胁着泵机组的安全,研究起动过程中的轴心轨迹,可以全面、直观地反映瞬态效应对机组运行稳定性的影响,掌握非调节工况下转子的振动状态。基于本特利408数据采集系统,测量获得了起动加速过程中不同转速下转子的轴心轨迹图和时域图,分解提纯一倍频和二倍频轴心轨迹图及其时域图,解析起动过程不同转速下的频谱图。研究结果表明,加速过程中,一倍频轴心轨迹由长短轴相差不大的椭圆逐渐变为圆形,可以判断转子存在弓状回转涡动且涡动不断加剧;二倍频轴心轨迹由近似水平线段逐渐变化为水平方向扁平的椭圆,可以判断转子存在不对中现象且水平方向的振动不断加剧。结合瞬态外特性曲线,研究发现随着转速的逐渐增大,转子系统的瞬时水力冲击逐渐增大,转子不平衡量和径向偏移量逐渐增大,振动情况逐渐加重,当转速达到最大值时,轴系振动出现一个峰值并随转速稳定有所降低并逐渐趋于稳定。加速是引起轴系振动的主要原因,瞬态效应是影响振动故障恶化的重要因素。研究成果对于实时评估混流泵起动过程中的轴系运行状态、有效降低或防止振动故障的恶化具有重要的工程应用价值和理论指导作用。
设计了一种气压驱动多气囊软体机器人,其由上方多个相互连通的气囊和位于下方的双层底座及前、后摩擦片组成。气囊充气膨胀,驱使软体机器人产生弯曲,通过设置不同的前、后摩擦片,利用前后摩擦力大小不同,分析了机器人周期性运动过程。采用Yeoh模型,研究了机器人运动过程中的非线性力学特性,得出软体机器人内部充气压强与前进距离之间的非线性关系模型。设计充、放气时间,验证了软体机器人的周期性运动过程。
工业机器人因其良好的重复定位精度而被广泛应用于堆垛、搬运、焊接等工业领域,但其绝对定位精度低,限制了其在高精度制造领域的应用。通过构建工业机器人误差测量与在线补偿闭环控制系统,对工业机器人的误差进行在线补偿。该方法综合考虑了几何参数和非几何参数引起的误差,提高了其位姿精度。研究基于KUKA机器人传感器接口(Robot sensor interface, RSI)进行位姿误差补偿的性能。通过研究KUKA机器人末端姿态的表示方式,提出一种基于激光跟踪仪测量工业机器人末端姿态的方法,并设计试验研究机器人在其工作空间的位姿误差特点。对搭建的闭环控制系统进行位姿误差补偿试验验证了该系统的位姿补偿效果。试验结果表明,经过第二次在线误差补偿后,其绝对定位精度由原先的0.628 mm提升到0.087 mm,姿态精度接近0.01°。