Please wait a minute...

机械工程学报  2022, Vol. 58 Issue (6): 221-241    DOI: 10.3901/JME.2022.06.221
  可再生能源与工程热物理 本期目录 | 过刊浏览 | 高级检索 |
汤勇1, 于佳栋1, 余树东1,2, 王鑫1, 李宗涛1, 丁鑫锐1, 余彬海1
1. 华南理工大学机械与汽车工程学院 广州 510640;
2. 广东省高分子先进制造技术及装备重点实验室(华南理工大学) 广州 510640
Research Progress and Prospect on Interfacial Solar Vapor Generation System
TANG Yong1, YU Jiadong1, YU Shudong1,2, WANG Xin1, LI Zongtao1, DING Xinrui1, YU Binhai1
1. School of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou 510640;
2. Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640
全文: PDF(1246 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 太阳能蒸汽发生是一种通过光热转换过程利用太阳能的可靠、环保、成本低廉的技术,其中界面太阳能蒸汽发生系统以其光热转换、热管理、输水逸汽、外围装置的高度集成以及精细设计的特点,借助微结构光子学、材料改性加工、热结构设计、机械设计等技术,能高效(蒸发效率高)、快速(蒸发速率高)地从块状水体甚至大气中吸取水分并通过太阳能转换的热能产生蒸汽,从而产出淡水、无机盐和能量。界面太阳能蒸汽发生技术以其广阔应用前景吸引了学者们的研究兴趣。本综述介绍了界面太阳能蒸汽发生系统的工作原理与组成材料;按光热转换、热管理、疏水逸汽等部分从宏微观结构设计角度总结了设计、优化策略;通过介绍具体的应用展示了界面太阳能蒸汽发生系统的外围装置;最后总结了界面太阳能蒸汽发生系统的研究进展并对其未来发展进行了展望。
E-mail Alert
关键词 光蒸汽界面太阳能蒸汽发生光热转换微结构光子学    
Abstract:Solar vapor generation is a reliable, environmentally friendly, inexpensive technology making use of solar energy by photothermal conversion progress. Photothermal conversion, heat management, water transport and vapor escape are integrated and finely designed for interfacial solar vapor generation (ISVG). With the aid of microstructural photonics, material modification, thermal structure design, mechanical design, ISVG system can absorb salty, polluted bulk water or even vapor from atmosphere and evaporate it to produce fresh water, mineral salt, energy efficiently and fast. ISVG technology has aroused great interest among researchers and made substantial progress. The working mechanism and component materials of ISVG system are briefly introduced. Macro/microstructure design and optimization strategies of photothermal conversion, heat management, water transport, and vapor escape are summarized. The peripherals of ISVG are shown by introducing detailed applications. Finally, the conclusions and outlook of ISVG are summarized.
Key wordssolar vapor    interfacial solar vapor generation    photothermal conversion    microstructural photonics
收稿日期: 2020-10-12      出版日期: 2022-05-19
ZTFLH:  TK513  
通讯作者: 余树东,男,1991年出生,博士。主要研究方向为光学微结构设计制造。   
作者简介: 汤勇,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为表面功能结构加工、微纳制造等。;于佳栋,男,1996年出生。主要研究方向为光学微结构设计制造。
汤勇, 于佳栋, 余树东, 王鑫, 李宗涛, 丁鑫锐, 余彬海. 界面太阳能蒸汽发生系统的研究进展与展望[J]. 机械工程学报, 2022, 58(6): 221-241.
TANG Yong, YU Jiadong, YU Shudong, WANG Xin, LI Zongtao, DING Xinrui, YU Binhai. Research Progress and Prospect on Interfacial Solar Vapor Generation System. Journal of Mechanical Engineering, 2022, 58(6): 221-241.
链接本文:      或
[1] KAYGUSUZ K. Utilization of solar energy and waste heat[J]. Energy Sources,1999,21(7):595-610.
[2] CRABTREE G W,LEWIS N S. Solar energy conversion[J]. Physics Today,2007,60(3):37-42.
[3] SHANNON M A,BOHN P W,ELIMELECH M,et al. Science and technology for water purification in the coming decades[J]. Nature,2008,452:301-310.
[4] LEFEBVRE O,MOLETTA R. Treatment of organic pollution in industrial saline wastewater:A literature review[J]. Water Research,2006,40(20):3671-3682.
[5] NEUMANN O,URBAN A S,DAY J,et al. Solar vapor generation enabled by nanoparticles[J]. ACS Nano,2013,7(1):42-49.
[6] ZHAO Dengwu,DUAN Haoze,YU Shengtao,et al. Enhancing localized evaporation through separated light absorbing centers and scattering centers[J]. Scientific Reports,2015(5):17276.
[7] XIAO Gang,WANG Xihui,NI Mingjiang,et al. A review on solar stills for brine desalination[J]. Applied Energy,2013,103:642-652.
[8] KABEEL A E,EL-AGOUZ S A. Review of researches and developments on solar stills[J]. Desalination,2011,276:1-12.
[9] SINGAL L C,KUMAR S,MAHAJAN A. Solar stills:A review[J]. International Journal of Engineering and Management Research,2016,6(3):173-177
[10] HOGAN N,URBAN A,AYALA-OROZCO C,et al. Nanoparticles heat through light localization[J]. Nano Letters,2014,14(8):4640-4645.
[11] GHASEMI H,NI George,MARCONNET A,et al. Solar steam generation by heat localization[J]. Nature Communications,2014,5:4449.
[12] LI Xiuqiang,XU Weichao,TANG Mingyao,et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences,2016,113:31.
[13] ZHOU Lin,LI Xiuqiang,NI G,et al. The revival of thermal utilization from the Sun:Interfacial solar vapor generation[J]. National Science Review,2019,6(3):562-578.
[14] ZHANG Lianbin,TANG Bo,WU Jinbo,et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J]. Advanced materials,2015,27(33):4889-4894
[15] TAO Peng,NI G,SONG Chengyi,et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3(12):1031-1041.
[16] CHEN Chaoji,KUANG Yudi,HU Liangbing. Challenges and opportunities for solar evaporation[J]. Joule,2018,3(3):683-718.
[17] DAO V D,CHOI H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges,2018,2(2):1700094.
[18] GAO Minmin,ZHU Liangliang,PEH C K,et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science,2019,12(3):841-864.
[19] ZHU Liangliang,GAO Minmin,PEH C K,et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons,2018,5:323-343.
[20] XIE Zhongjian,DUO Yanhong,LIN Zhitao,et al. The rise of 2D photothermal materials beyond graphene for clean water production[J]. Advanced Science,2020,7(5):1902236.
[21] DAO V D,VU N H,YUN S. Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano Energy,2019,68:104324
[22] SHI Y,LI Renyuan,JIN Yong,et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule,2018,2(6):1171-1186.
[23] LI Xiuqiang,LI Jinlei,LU Jinyou,et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule,2018,2(7):1331-1338.
[24] EUSTIS S,EL-SAYED M A. Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J]. Chemical Society Reviews,2006,35:209-217.
[25] RICHARDSON H H,CARLSON M T,TANDLER P J,et al. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions[J]. Nano Letters,2009,9(3):1139-1146.
[26] BRONGERSMA M L,HALAS N J,NORDLANDER P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology,2015,10(1):25-34.
[27] JI Chengang,LEE K T,XU Ting,et al. Engineering light at the nanoscale:Structural color filters and broadband perfect absorbers[J]. Advanced Optical Materials,2017,5(20):1700368.
[28] HUTTER E,FENDLER J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials,2004,16(19):1685-1706.
[29] GAO Minmin,PEH C K,PHAN H T,et al. Solar absorber gel:Localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation[J]. Advanced Energy Materials,2018,8(25):1800711.
[30] ZHOU Lin,TAN Yingling,WANG Jingyang,et al. 3D self-assembly of aluminium nanoparticles for plasmon- enhanced solar desalination[J]. Nature Photonics,2016,10(6):393-398.
[31] ZHOU Lin,ZHUANG Shendong,HE Chengyu,et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion[J]. Nano Energy,2017,32:195-200.
[32] MANDAL J,WANG Derek,OVERVIG A C,et al. Scalable,"Dip-and-Dry" fabrication of a wide-angle plasmonic selective absorber for high-efficiency solar-thermal energy conversion[J]. Advanced Materials,2017,29(41):1702156.
[33] PENG Yucan,CUI Yi. Advanced textiles for personal thermal management and energy[J]. Joule,2020,4(4):724 -742.
[34] LIU Yanming,YU Shengtao,FENG Rui,et al. A bioinspired,reusable,paper-based system for high-performance large-scale evaporation[J]. Advanced Materials,2015,27(17):2768-2774.
[35] FANG Jing,LIU Qinglei,ZHANG Wang,et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation[J]. Journal of Materials Chemistry A,2017,5:17817-17821.
[36] BAE K,KANG G,CHO S K,et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation[J]. Nature Communications,2015(6):10103.
[37] YAO Jiandong,ZHENG Zhaoqiang,YANG Guowei. Alloying-assisted phonon engineering of layered BiInSe3@nickel foam for efficient solar-enabled water evaporation[J]. Nanoscale,2017,9(42):16396-16403.
[38] MU Chunhong,SONG Yuanqii-ang,DENG Kai,et al. High solar desalination efficiency achieved with 3D Cu2ZnSnS4 nanosheet-assembled membranes[J]. Advanced Sustainable Systems,2017,1(10):1700064.
[39] ZHANG Lulu,XING Jun,WEN Xinglin,et al. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination[J]. Nanoscale,2017,9:12843-12849.
[40] KIM J,BAIK S,RYU S H,et al. 2D MATERIALS. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science,2015,349:723-726.
[41] REN Peng,YANG Xiaochun. Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J]. Solar Rrl,2018,2(4):7.
[42] ZHU Guilin,XU Jijian,ZHAO Wenli,et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces,2016,8(46):31716-31721.
[43] WANG Juan,LI Yangyang,DENG Lin,et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29(3):1603730.
[44] DING Dandan,HUANG Weicheng,SONG Chuanqi,et al. Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation[J]. Chemical Communications,2017,53(50):6744-6747.
[45] CHANG Yuhong,WANG Zhenguang,SHI Yu-e,et al. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun[J]. Journal of Materials Chemistry A,2018,6(23):10939-10946.
[46] MA Churong,YAN Jiahao,HUANG Yingcong,et al. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion[J]. Science Advances,2018,4(8):9894.
[47] LIU He,CHEN Chaoji,CHEN Guang,et al. High‐performance solar steam device with layered channels:Artificial tree with a reversed design[J]. Advanced Energy Materials,2017,8(8):1701616.
[48] HUANG Wei,HUANG Y,YOU Y,et al. High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy[J]. Advanced Functional Materials,2017,27(33):1701388.
[49] LIU Hongsheng,GAO Junfeng,ZHAO Jijun. From boron cluster to two-dimensional boron sheet on Cu(111) surface:Growth mechanism and hole formation[J]. Scientific Reports,2013,3(1):3238.
[50] ZHANG Panpan,LI Jing,LÜ Lingxiao,et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano,2017,11(5):5087-5093.
[51] REN Huaying,TANG Miao,GUAN Baolu,et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials,2017,29(38):1702590.
[52] SUN Pengzhan,WANG Kunlin,ZHU Hongwei. Recent developments in graphene-based membranes:Structure,mass-transport mechanism and potential applications[J]. Advanced Materials,2016,28(12):2287-2310.
[53] LI Xiuqiang,XU Weichao,TANG Mingyao,et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences,2016,113(49):13953-13958.
[54] HU Xiaozhen,XU Weichao,ZHOU Lin,et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials,2017,29(5):1604031.
[55] YU Kaifu,SHAO Pengfei,MENG Pengwei,et al. Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun[J]. Journal of Hazardous Materials,2020,392(15):122350.
[56] YANG Peihua,LIU Kang,CHEN Qian,et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science,2017,10(9):1923-1927.
[57] ASTHANA A,MAITRA T,BUCHEL R,et al. Multifunctional superhydrophobic polymer/carbon nanocomposites:Graphene,carbon nanotubes,or carbon black?[J]. ACS Applied Materials & Interfaces,2014,6(11):8859-8867.
[58] MARTINS J V,ARTAXO P,LIOUSSE C,et al. Effects of black carbon content,particle size,and mixing on light absorption by aerosols from biomass burning in Brazil[J]. Journal of Geophysical Research,1998,103(24):32041-32050.
[59] LIU Yiming,CHEN Jingwei,GUO Dawei,et al. Floatable,self-cleaning,and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the Air-Water interface[J]. ACS Applied Materials & Interfaces,2015,7(24):13645-13652.
[60] ZHAO Jinping,YANG Bingjun,YANG Zhi,et al. Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen[J]. Carbon,2014,79:470-477.
[61] ZENG Yao,WANG Kun,YAO Jianfeng,et al. Hollow carbon beads for significant water evaporation enhancement[J]. Chemical Engineering Science,2014,116(6):704-709.
[62] GUO Jing,LI Dongdong,QIAN Zhenchao,et al. Carbon vesicles:A symmetry-breaking strategy for wide-band and solvent-processable ultrablack coating materials[J]. Advanced Functional Materials,2020,3(17):1909877.
[63] GAO Xin,REN Huaying,ZHOU Jingyan,et al. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation[J]. Chemistry of Materials,2017,29(14):5777-5781.
[64] YIN Zhe,WANG Huiming,JIAN Muqiang,et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation[J]. ACS Applied Materials Interfaces,2017,9(34):28596-28603.
[65] XIAO Peng,GU Jincui,ZHANG Chang,et al. A scalable,low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction[J]. Nano Energy,2019,65:104002.
[66] LI Weigu,LI Zheng,BERTELSMANN K,et al. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis[J]. Advanced Materials,2019,31(29):1900720.
[67] JIANG Qisheng,GHOLAMI DERAMI H,GHIM D,et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation[J]. Journal of Materials Chemistry A,2017,5(35):18397-18402.
[68] GENG Hongya,XU Qiang,WU Mingmao,et al. Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production[J]. Nature Communications,2019,10(1):1512.
[69] LI Chengwei,JIANG Degang,HUO Bingbing,et al. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination[J]. Nano Energy,2019,60:841-849.
[70] JIA Chao,LI Yiju,YANG Zhi,et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule,2017,1(3):588-599.
[71] DONG Liye,HU Chuangang,SONG Long,et al. A large-area,flexible,and flame-retardant graphene paper[J]. Advanced Functional Materials,2016,26(9):1470-1476.
[72] XU Ning,HU Xiaozhen,XU Weichao,et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials,2017,29(28):1606762.
[73] HE Fang,HAN Mingcai,ZHANG Jin,et al. A simple,mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation[J]. Nano Energy,2020,71:104650.
[74] SONG Hucheng,WANG Sheng,SONG Xiaoying,et al. Solar-driven all-solid-state lithium–air batteries operating at extreme low temperatures[J]. Energy & Environmental Science,2020,13(4):1205-1211
[75] WANG Xueyang,LI Xiuqiang,LIU Guoliang,et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator[J]. Angewandte Chemie International Edition,2019,58(35):12054-12058.
[76] CUI Linfan,ZHANG Panpan,XIAO Yukun,et al. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture[J]. Advanced Materials,2018,30(22):1706805.
[77] 魏天骐,李秀强,李金磊,等. 界面光蒸汽转化研究进展[J]. 科学通报,2018,63(14):1405-1416. WEI Tianqi,LI Xiuqiang,LI Jinlei,et al. Research advances on interface solar vapor generation[J]. Chinese Science Bulletin,2018,63(14):1405-1416.
[78] GUERRERO-FLOREZ V,MENDEZ-SANCHEZ S C,PATRON-SOBERANO O A,et al. Gold nanoparticle- mediated generation of reactive oxygen species during plasmonic photothermal therapy:A comparative study for different particle sizes,shapes,and surface conjugations[J]. Journal of Materials Chemistry B,2020,8(14):2862-2875.
[79] JIANG Haoqing,TONG Lei,LIU Huidong,et al. Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals[J]. Matter,2020,2(6):1535-1549.
[80] 骆有东,张永康,孔德军,等. CO2激光热处理光热转换层的应用分析[J]. 激光杂志,2005,10(6):79-80. LUO Youdong,ZHANG Yongkang,KONG Dejun,et al. Application analysis of photothermal conversion layer by CO2 laser treament[J]. Laser Journal,2005,10(6):79-80.
[81] AONO T,EBATA Y,YAEGASHI K,et al. Concave diffraction grating and method for manufacturing the same,and optical device:Japan,JP2020034693-A[P]. 2020-03-05.
[82] FANG Jixiang,ZHANG Lingling,LI Jiang,et al. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures[J]. Nature Communications,2018,9:521.
[83] GUO Ping,YANG Yang. A novel realization of diffractive optically variable devices using ultrasonic modulation cutting[J]. Cirp Annals-Manufacturing Technology,2019,68(1):575-578.
[84] ZHAO Fei,WANG Lixia,ZHAO Yang,et al. Graphene oxide nanoribbon assembly toward moisture-powered information storage[J]. Advanced Materials,2017,29:1604972.
[85] YANG K,SHI Y,WU Mengchun,et al. Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination[J]. Journal of Materials Chemistry A,2020,8(4):1887-1895.
[86] WU X,ROBSON M E,PHELPS J L,et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy,2019,56:708-715.
[87] YANG Xiangdong,YANG Yanbing,FU Linna,et al. An ultrathin flexible 2D membrane based on single-walled nanotube–MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials,2018,28(3):1704505.
[88] LI Kerui,CHANG Ting-Hsiang,LI Zhipeng,et al. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management[J]. Advanced Energy Materials,2019,9(34):1901687.
[89] LI Renyuan,ZHANG Liangbin,SHI Le,et al. MXene Ti3C2:An effective 2D light-to-heat conversion material[J]. ACS Nano,2017,11(4):3752-37529.
[90] LIU Xueqing,YANG Shuangning,SUN Yunlu,et al. Ultra-smooth micro-optical components of various geometries[J]. Optics Letters,2019,44(10):2454-2457.
[91] WANG Wei,QU Yurui,DU Kaikai,et al. Broadband optical absorption based on single-sized metal- dielectric-metal plasmonic nanostructures with high-ε" metals[J]. Applied Physics Letters,2017,110(10):101101.
[92] GORGULU K,GOK A,YILMAZ M,et al. All-silicon ultra-broadband infrared light absorbers[J]. Scientific Reports,2016,6(1):38589.
[93] LIU Fang,LIANG Weidong,WANG Chengjun,et al. Superhydrophilic and mechanically robust phenolic resin as double layered photothermal materials for efficient solar steam generation[J]. Materials Today Energy,2020,16:100375.
[94] XU Ning,ZHU Pengchen,SHENG Yun,et al. Synergistic tandem solar electricity-water generators[J]. Joule,2020,4(2):347-358.
[95] LI Tian,LIU He,ZHAO Xinpeng,et al. Scalable and highly efficient mesoporous wood-based solar steam generation device localized heat,rapid water transport[J]. Advanced Functional Materials,2018,28(16):1707134.
[96] XIAO Peng,HE Jiang,LIANG Yun,et al. Rationally programmable paper-based artificial trees toward multipath solar-driven water extraction from liquid/solid substrates[J]. Solar RRL,2019,3(7):1900004.
[97] ZHAO Yang,HU Chuangang,SONG Long,et al. Functional graphene nanomesh foam[J]. Energy & Environmental Science,2014,7:1913-1918.
[98] FUJIWARA M,IMURA T. Photo induced membrane separation for water purification and desalination using azobenzene modified anodized alumina membranes[J]. ACS Nano,2015,9(6):5705-5712.
[99] XU Weichao,HU Xiaozhen,ZHUANG Shendong,et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced energy materials,2018,8(14):1702884.
[100] LI Yiju,GAO Tingting,YANG Zhi,et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy,2017,41:201-209.
[101] LI Yiju ,GAO Tingting,YANG Zhi,et al. 3D-printed,all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J]. Advanced Materials,2017,29(26):1700981.
[102] LI Xiuqiang,LIN Renxing,NI George,et al. Three-dimensional artificial transpiration for efficient solar waste water[J]. National Science Review,2018,5(1):70-77.
[103] BOWEN I S. The ratio of heat losses by conduction and by evaporation from any water surface[J]. Physical Review,1926,27(6):779-787.
[104] WU Lei,DONG Zhichao,CAI Zheren,et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications,2020,11(1):521.
[105] ZHAO Fei,ZHOU Xingyi,SHI Ye,et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495.
[106] NI Feng,XIAO Peng,QIU Nianxiang,et al. Collective behaviors mediated multifunctional black sand aggregate towards environmentally adaptive solar-to-thermal purified water harvesting[J]. Nano Energy,2020,68:104311.
[107] LI Jinlei,WANG Xueyang,LIN Zhenhui,et al. Over 10 kg•m−2•h−1 evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule,2020,4(4):928-937.
[108] YANG Yanbing,YANG Xiangdong,ZOU Mingchu,et al. Two-Dimensional Flexible Bilayer Janus Membrane for Advanced Photothermal Water Desalination[J]. ACS Energy Letters. 2018,3(5): 1165-1171.
[109] YU Shengtao,ZHANG Yao,DUAN Haoze,et al. The impact of surface chemistry on the performance of localized solar-driven evaporation system[J]. Scientific Reports,2015,5:13600.
[110] FENG Lin,LI Shuhong,LI Yingshu,et al. Super-hydrophobic surfaces:From natural to artificial[J]. Advanced Materials,2002,14(24):1857-1860.
[111] SUN Taolei,FENG Lin,GAO Xuefeng,et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research,2005,38(8):644-652.
[112] GUO Youhong,ZHOU Xingyi,ZHAO F,et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination[J]. ACS Nano,2019,13(7):7913-7919.
[113] ZHOU X,ZHAO Fei,GUO Youhong,et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances,2019,5(6):5484.
[114] NI George,ZANDAVI S H,JAVID S M,et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science,2018,11(6):1510-1519.
[115] SHI Y,ZHANG Chenlin,LI Renyuan,et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology,2018,52(20):11822-11830.
[116] MA Qinglang,YIN Pengfei,ZHAO Meiting,et al. MOF-based hierarchical structures for solar-thermal clean water production[J]. Advanced Materials,2019,31(17):1808249.
[117] QIAN Xiaoshi,ZHAO Yusen,ALSAID Y,et al. Artificial phototropism for omnidirectional tracking and harvesting of light[J]. Nature Nanotechnology,2019,14:1048-1055.
[118] GAO Fengxian,LI Wanwan,WANG Xiaoqian,et al. A self-sustaining pyroelectric nanogenerator driven by water vapor[J]. Nano Energy,2016,22:19-26.
[119] LI Xiuqiang,MIN Xinzhe,LI Jinlei,et al. Storage and recycling of interfacial solar steam enthalpy[J]. Joule,2018,2(11):2477-2484.
[120] XUE Guobin,XU Ying,DING Tianpeng,et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology,2017,12(4):317-321.
[121] GONZALES J,KURIHARA D,MAEDA T,et al. Novel superhydrophobic surface with solar-absorptive material for improved de-icing performance.[J]. Materials,2019,12(17):2758.
[122] GAO Minmin,PEH C,HO G. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination[J]. Energy & Environmental Science,2016,9(10):3151-3160.
[123] VARGHESE O K,PAULOSE M,LATEMPA T J,et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels[J]. Nano Letters,2009,9(2):731-737.
[124] LIN Han,STURMBERG B C P,LIN Kengte,et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light[J]. Nature Photonics,2019,13(4):270-276.
[125] LIN Kengte,LIN Han,YANG Tieshan,et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion[J]. Nature Communications,2020,11(1):1389.
[1] 侯亚丽, 汪建文, 王强, 王鑫厅. 建筑物群内屋顶形状对屋顶风力机微观选址的影响[J]. 机械工程学报, 2018, 54(2): 191-200.
[2] 颜健, 彭佑多, 余佳焕, 王旻晖. 碟式太阳能光热系统光-机-热多场耦合建模及其 聚光性能预测应用[J]. 机械工程学报, 2015, 51(14): 138-151.
[3] 刘庆;赵力;赵玮奇;王晓东. 碟式系统半球形接收器热力计算模型的研究[J]. , 2014, 50(8): 128-134.
[4] 孟力;尤政. 定日镜镜面弯曲机构设计及面形优化[J]. , 2013, 49(11): 36-42.
Full text



京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载